共查询到20条相似文献,搜索用时 0 毫秒
1.
It is well known that proteins denature under high pressure. The mechanism that underlies such a process is still not clearly understood, however, giving way to controversial interpretations. Using molecular dynamics simulation on systems that may be regarded experimentally as limiting examples of the effect of high pressure on globular proteins, such as lysozyme and apomyoglobin, we have effectively reproduced such similarities and differences in behavior as are interpreted from experiment. From the analysis of such data, we explain the experimental evidence at hand through the effect of pressure on the change of water structure, and hence the weakening of the hydrophobic effect that is known to be the main driving force in protein folding. 相似文献
2.
Although solution additives prevent protein misfolding, the mechanism remains elusive. In this paper, we compare the preventive effects of trans-1,2-cyclohexanediamine (1,2-CHDA) and trans-1,4-cyclohexanediamine (1,4-CHDA) on the heat-induced inactivation of ribonuclease A (RNase A) and lysozyme. These additives are more effective in preventing thermal inactivation of the proteins than guanidine (Gdn) and arginine (Arg). The results suggest two possibilities: (i) decrease in the hydrophobic interaction between unfolded protein molecules is indispensable for preventing protein association, and (ii) the electrostatic interaction between additives interacting with the hydrophobic residues of protein molecules plays an important role in preventing thermal inactivation of proteins. 相似文献
3.
4.
Proteins are polymeric molecules with many degrees of conformational freedom whose internal energetic interactions are typically screened to small distances. Therefore, in the high-dimensional conformation space of a protein, the energy landscape is locally relatively flat, in contrast to low-dimensional representations, where, because of the induced entropic contribution to the full free energy, it appears funnel-like. Proteins explore the conformation space by searching these flat subspaces to find a narrow energetic alley that we call a hypergutter and then explore the next, lower-dimensional, subspace. Such a framework provides an effective representation of the energy landscape and folding kinetics that does justice to the essential characteristic of high-dimensionality of the search-space. It also illuminates the important role of nonnative interactions in defining folding pathways. This principle is here illustrated using a coarse-grained model of a family of three-helix bundle proteins whose conformations, once secondary structure has formed, can be defined by six rotational degrees of freedom. Two folding mechanisms are possible, one of which involves an intermediate. The stabilization of intermediate subspaces (or states in low-dimensional projection) in protein folding can either speed up or slow down the folding rate depending on the amount of native and nonnative contacts made in those subspaces. The folding rate increases due to reduced-dimension pathways arising from the mere presence of intermediate states, but decreases if the contacts in the intermediate are very stable and introduce sizeable topological or energetic frustration that needs to be overcome. Remarkably, the hypergutter framework, although depending on just a few physically meaningful parameters, can reproduce all the types of experimentally observed curvature in chevron plots for realizations of this fold. 相似文献
5.
Loredana S. Dorobantu Anthony K. C. Yeung Julia M. Foght Murray R. Gray 《Applied microbiology》2004,70(10):6333-6336
Formation of oil-water emulsions during bacterial growth on hydrocarbons is often attributed to biosurfactants. Here we report the ability of certain intact bacterial cells to stabilize oil-in-water and water-in-oil emulsions without changing the interfacial tension, by inhibition of droplet coalescence as observed in emulsion stabilization by solid particles like silica. 相似文献
6.
Jeong-Mo Choi Adrian?W.R. Serohijos Sean Murphy Dennis Lucarelli Leo?L. Lofranco Andrew Feldman Eugene?I. Shakhnovich 《Biophysical journal》2015,108(4):795-798
It has long been known that solvation plays an important role in protein-protein interactions. Here, we use a minimalistic solvation-based model for predicting protein binding energy to estimate quantitatively the contribution of the solvation factor in protein binding. The factor is described by a simple linear combination of buried surface areas according to amino-acid types. Even without structural optimization, our minimalistic model demonstrates a predictive power comparable to more complex methods, making the proposed approach the basis for high throughput applications. Application of the model to a proteomic database shows that receptor-substrate complexes involved in signaling have lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemical compositions on interfaces. Also, we found that protein complexes with components that come from the same genes generally have lower affinities than complexes formed by proteins from different genes, but in this case the difference originates from different interface areas. The model was implemented in the software PYTHON, and the source code can be found on the Shakhnovich group webpage: http://faculty.chemistry.harvard.edu/shakhnovich/software. 相似文献
7.
The thermal stability of the triplexes d(C(+)-T)(6):d(A-G)(6);d(C-T)(6) and d(T)(21):d(A)(21);d(T)(21) was studied in the presence of high concentrations of the anions Cl(-), HPO(4)(2-), CH(3)COO(-), SO(4)(2-) and ClO(4)(-). Thermally-induced triplex and duplex transitions were identified by UV- and CD-spectroscopy and T(m) values were determined from melting profiles. A thermodynamic analysis of triplex transitions shows the limitations of commonly used treatments for determining the associated release or uptake of salt, solute or water. Enhancement of the stability of these triplexes follows the rank order of the Hofmeister series for anions of sodium and ammonium salts, whereas water structure-breaking solutes have the opposite effect. The rank order for the Hofmeister series ClO(4)(-)相似文献
8.
Hofmeister效应反映了溶质小分子通过与水分子的相互作用, 对蛋白质等生物大分子造成的结构上的影响.通过对此效应的深入研究, 可以从理论上解释许多常见的生理生化现象.蛋白质的变性、复性问题是与Hofmeister效应密切相关的生化基础课题. 目前重组蛋白生产过程中包含体的变性和复性问题为上述理论研究提供了广泛的应用空间. 相似文献
9.
Bacteriophage M13 major coat protein was reconstituted in different nonmatching binary lipid mixtures composed of 14:1PC and 22:1PC lipid bilayers. Challenged by this lose-lose situation of hydrophobic mismatch, the protein-lipid interactions are monitored by CD and site-directed spin-label electron spin resonance spectroscopy of spin-labeled site-specific single cysteine mutants located in the C-terminal protein domain embedded in the hydrophobic core of the membrane (I39C) and at the lipid-water interface (T46C). The CD spectra indicate an overall α-helical conformation irrespective of the composition of the binary lipid mixture. Spin-labeled protein mutant I39C senses the phase transition in 22:1PC, in contrast to spin-labeled protein mutant T46C, which is not affected by the transition. The results of both CD and electron spin resonance spectroscopy clearly indicate that the protein preferentially partitions into the shorter 14:1PC both above and below the gel-to-liquid crystalline phase transition temperature of 22:1PC. This preference is related to the protein tilt angle and energy penalty the protein has to pay in the thicker 22:1PC. Given the fact that in Escherichia coli, which is the host for M13 bacteriophage, it is easier to find shorter 14 carbon acyl chains than longer 22 carbon acyl chains, the choice the M13 coat protein makes seems to be evolutionary justified. 相似文献
10.
The Hofmeister series, first noted in 1888, ranks the relative influence of ions on the physical behavior of a wide variety of aqueous processes ranging from colloidal assembly to protein folding. Originally, it was thought that an ion's influence on macromolecular properties was caused at least in part by 'making' or 'breaking' bulk water structure. Recent time-resolved and thermodynamic studies of water molecules in salt solutions, however, demonstrate that bulk water structure is not central to the Hofmeister effect. Instead, models are being developed that depend upon direct ion-macromolecule interactions as well as interactions with water molecules in the first hydration shell of the macromolecule. 相似文献
11.
Effect of Macromolecular Crowding on Protein Binding Stability: Modest Stabilization and Significant Biological Consequences 总被引:1,自引:0,他引:1
Jyotica Batra 《Biophysical journal》2009,97(3):906-911
Macromolecular crowding has long been known to significantly affect protein oligomerization, and yet no direct quantitative measurements appear to have been made of its effects on the binding free energy of the elemental step of adding a single subunit. Here, we report the effects of two crowding agents on the binding free energy of two subunits in the Escherichia coli polymerase III holoenzyme. The crowding agents are found, paradoxically, to have only a modest stabilizing effect, of the order of 1 kcal/mol, on the binding of the two subunits. Systematic variations in the level of stabilization with crowder size are nevertheless observed. The data are consistent with theoretical predictions based on atomistic modeling of excluded-volume interactions with crowders. We reconcile the apparent paradox presented by our data by noting that the modest effects of crowding on elemental binding steps are cumulative, and thus lead to substantial stabilization of higher oligomers. Correspondingly, the effects of small variations in the level of crowding during the lifetime of a cell may be magnified, suggesting that crowding may play a role in increased susceptibility to protein aggregation-related diseases with aging. 相似文献
12.
13.
The transfer of phenotypes from one individual to another is a fundamental aspect of biology. In addition to traditional nucleic acid-based genetic determinants, unique proteins known as prions can also act as elements of inheritance, infectivity, and disease. Nucleic acids and proteins encode genetic information in distinct ways, either in the sequence of bases in DNA or RNA or in the three dimensional structure of the polypeptide chain. Given these differences in the nature of the genetic repository, the mechanisms underlying the transmission of nucleic acid-based and protein-based phenotypes are necessarily distinct. While the appearance, persistence and transfer of nucleic acid determinants require the synthesis of new polymers, recent studies indicate that prions are propagated through dynamic transitions in the structure of existing protein.Key Words: prion, PrP, [PSI+], [URE3], [Het-s], Sup35, Ure2, Het-s, Hsp104 相似文献
14.
《朊病毒》2013,7(1):36-43
The transfer of phenotypes from one individual to another is a fundamental aspect of biology. In addition to traditional nucleic acid-based genetic determinants, unique proteins known as prions can also act as elements of inheritance, infectivity, and disease. Nucleic acids and proteins encode genetic information in distinct ways, either in the sequence of bases in DNA or RNA or in the three dimensional structure of the polypeptide chain. Given these differences in the nature of the genetic repository, the mechanisms underlying the transmission of nucleic acid-based and protein-based phenotypes are necessarily distinct. While the appearance, persistence and transfer of nucleic acid determinants require the synthesis of new polymers, recent studies indicate that prions are propagated through dynamic transitions in the structure of existing protein. 相似文献
15.
Characterization of solvent preferences of proteins is essential to the understanding of solvent effects on protein structure and stability. Although it is generally believed that solvent preferences at distinct loci of a protein surface may differ, quantitative characterization of local protein solvation has remained elusive. In this study, we show that local solvation preferences can be quantified over the entire protein surface from extended molecular dynamics simulations. By subjecting microsecond trajectories of two proteins (lysozyme and antibody fragment D1.3) in 4 M glycerol to rigorous statistical analyses, solvent preferences of individual protein residues are quantified by local preferential interaction coefficients. Local solvent preferences for glycerol vary widely from residue to residue and may change as a result of protein side-chain motions that are slower than the longest intrinsic solvation timescale of ~10 ns. Differences of local solvent preferences between distinct protein side-chain conformations predict solvent effects on local protein structure in good agreement with experiment. This study extends the application scope of preferential interaction theory and enables molecular understanding of solvent effects on protein structure through comprehensive characterization of local protein solvation. 相似文献
16.
The Hofmeister effect and the behaviour of water at interfaces 总被引:33,自引:0,他引:33
Starting from known properties of non-specific salt effects on the surface tension at an air-water interface, we propose the first general, detailed qualitative molecular mechanism for the origins of ion-specific (Hofmeister) effects on the surface potential difference at an air-water interface; this mechanism suggests a simple model for the behaviour of water at all interfaces (including water-solute interfaces), regardless of whether the non-aqueous component is neutral or charged, polar or non-polar. Specifically, water near an isolated interface is conceptually divided into three layers, each layer being I water-molecule thick. We propose that the solute determines the behaviour of the adjacent first interfacial water layer (I1); that the bulk solution determines the behaviour of the third interfacial water layer (I3), and that both I1 and I3 compete for hydrogen-bonding interactions with the intervening water layer (I2), which can be thought of as a transition layer. The model requires that a polar kosmotrope (polar water-structure maker) interact with I1 more strongly than would bulk water in its place; that a chaotrope (water-structure breaker) interact with I1 somewhat less strongly than would bulk water in its place; and that a non-polar kosmotrope (non-polar water-structure maker) interact with I1 much less strongly than would bulk water in its place. We introduce two simple new postulates to describe the behaviour of I1 water molecules in aqueous solution. The first, the 'relative competition' postulate, states that an I1 water molecule, in maximizing its free energy (--delta G), will favour those of its highly directional polar (hydrogen-bonding) interactions with its immediate neighbours for which the maximum pairwise enthalpy of interaction (--delta H) is greatest; that is, it will favour the strongest interactions. We describe such behaviour as 'compliant', since an I1 water molecule will continually adjust its position to maximize these strong interactions. Its behaviour towards its remaining immediate neighbours, with whom it interacts relatively weakly (but still favourably), we describe as 'recalcitrant', since it will be unable to adjust its position to maximize simultaneously these interactions.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
17.
Tiago M. Pais Bertrand Garcia-Moreno Helena Santos 《Journal of molecular biology》2009,394(2):237-15164
Understanding protein stabilization by small organic compounds is a topic of great practical importance. The effect of mannosylglycerate, a charged compatible solute typical of thermophilic microorganisms, on a variant of staphylococcal nuclease was investigated using several NMR spectroscopy methods. No structural changes were apparent from the chemical shifts of amide protons. Measurements of 15N relaxation and model-free analysis, water-amide saturation transfer (phase-modulated CLEAN chemical exchange), and hydrogen/deuterium exchange rates provided a detailed picture of the effects of mannosylglycerate on the backbone dynamics and time-averaged structure of this protein. The widest movements of the protein backbone were significantly constrained in the presence of mannosylglycerate, as indicated by the average 5-fold decrease of the hydrogen/deuterium exchange rates, but the effect on the millisecond timescale was small. At high frequencies, internal motions of staphylococcal nuclease were progressively restricted with increasing concentrations of mannosylglycerate or reduced temperature, while the opposite effect was observed with urea (a destabilizing solute). The order parameters showed a strong correlation with the changes in the Tm values induced by different solutes, determined by differential scanning calorimetry. These data show that mannosylglycerate caused a generalised reduction of backbone motions and demonstrate a correlation between protein stabilization and protein rigidification. 相似文献
18.
19.
B. David Silverman 《Journal of biomolecular structure & dynamics》2013,31(4):411-423
Abstract Hydropathy plots or window averages over local stretches of the sequence of residue hydrophobicity have revealed patterns related to various protein tertiary structural features. This has enabled identification of regions of the sequence that are at the surface or within the interior of globular soluble proteins, regions located within the lipid bilayer of transmembrane proteins, portions of the sequence that characterize repeating motifs, as well as motifs that usefully characterize different protein structural families. This, therefore, provides one example of the generally expressed maxim that “sequence determines structure”. On the other hand, a number of previous investigations have shown the rapidly varying values of residue hydrophobicity along the sequence to be distributed approximately randomly. So one might question just how much of the sequence actually determines structure. It is, therefore, of interest to extract that part of this rapidly varying distribution of residue hydrophobicity that is responsible for the longer wavelength variations that correlate with protein tertiary structural features and to determine their prevalence within the entire distribution. This is accomplished by a finite Fourier analysis of the sequence of residue hydrophobicity and of a new measure of residue distance from the protein interior. Calculations are performed on a number of globins, immunoglobulins, cuprodoxins, and papain-like structures. The spectral power of the Fourier amplitudes of the frequencies extracted, whose inverse transforms underlie the windowed values of residue hydrophobicity is shown to be a small fraction of the total power of the hydrophobicity distribution and thereby consistent with a distribution that might appear to be predominantly random. The wide range of sequence identity between proteins having the same fold, all exhibiting similar small fractions of power amplitude that correlate with the longer wavelength inside-to- outside excursions of the amino acid residues, supports the general contention that close sequence identity is an expression of a close evolutionary relationship rather than an expression of structural similarity. Practical implications of the present analysis for protein structure prediction and engineering are also described. 相似文献
20.
Abstract Several different monomeric proteins with either one or two domains were used to study the effect of protein unfolding on effective hydrophobicity of proteins. Protein unfolding was inhibited by cross-linking with either toluene diisocyanate or glutaraldehyde. The native enzyme was much more readily bound to the hydrophobic resin than the cross-linked species. The ligand, 3-phosphoglycerate, significantly decreased the amount of phosphoglycerate kinase able to bind to octyl-Sepharose. Sucrose also caused a statistically significant decrease in protein binding to the hydrophobic resin. These studies support the concept that the degree of protein unfolding influences effective hydrophobicity as measured by retention on octyl-Sepharose. 相似文献