共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of Pulmonary Surfactant Protein SP-B on the Micro- and Nanostructure of Phospholipid Films 总被引:1,自引:0,他引:1
Monolayers of dipalmitoylphosphatidylcholine (DPPC) and DPPC/dipalmitoylphosphatidylglycerol (DPPG) (7:3, w/w) in the absence or in the presence of 2, 5, 10, or 20 weight percent of porcine surfactant protein SP-B were spread at the air-liquid interface of a surface balance, compressed up to surface pressures in the liquid-expanded/liquid-condensed (LE-LC) plateau of the isotherm, transferred onto mica supports, and analyzed by scanning force microscopy. In the absence of protein, the films showed micrometer-sized condensed domains with morphology and size that were analogous to those observed in situ at the air-liquid interface by epifluorescence microscopy. Scanning force microscopy permits examination of the coexisting phases at a higher resolution than previously achieved with fluorescent microscopy. Both LE and LC regions of DPPC films were heterogeneous in nature. LC microdomains contained numerous expanded-like islands whereas regions apparently liquid-expanded were covered by a condensed-like framework of interconnected nanodomains. Presence of increasing amounts of pulmonary surfactant protein SP-B affected the distribution of the LE and LC regions of DPPC and DPPC/DPPG films both at the microscopic and the nanoscopic level. The condensed microdomains became more numerous but their size decreased, resulting in an overall reduction of the amount of total LC phase in both DPPC and DPPC/DPPG films. At the nanoscopic level, SP-B also caused a marked reduction of the size of the condensed-like nanodomains in the LE phase and an increase in the length of the LE/LC interface. SP-B promotes a fine nanoscopic framework of lipid and lipid-protein nanodomains that is associated with a substantial mechanical resistance to film deformation and rupture as observed during film transference and manipulation. The effect of SP-B on the nanoscopic structure of the lipid films was greater in DPPC/DPPG than in pure DPPC films, indicating additional contributions of electrostatic lipid-protein interactions. The alterations of the nanoscopic structures of phospholipid films by SP-B provide the structural framework for the protein simultaneously sustaining structural stability as well as dynamical flexibility in surfactant films at the extreme conditions imposed by the respiratory mechanics. SP-B also formed segregated two-dimensional clusters that were associated with the boundaries between LC microdomains and the LE regions of DPPC and DPPC/DPPG films. The presence of these clusters at protein-to-lipid proportions above 2% by weight suggests that the concentration of SP-B in the surfactant lipid-protein complexes may be close to the solubility limit of the protein in the lipid films. 相似文献
2.
Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C
(SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection.
Site models used the nonsynonymous/synonymous rate ratio (ω) as an indicator of selection pressure. Mechanistic models used
physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly
identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving
lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites
2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site
10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical
properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition
of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may
lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein
to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving
and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Reviewing Editor: Dr. Richard Kliman 相似文献
3.
van Eijk M Rynkiewicz MJ White MR Hartshorn KL Zou X Schulten K Luo D Crouch EC Cafarella TR Head JF Haagsman HP Seaton BA 《The Journal of biological chemistry》2012,287(32):26666-26677
Pigs can act as intermediate hosts by which reassorted influenza A virus (IAV) strains can be transmitted to humans and cause pandemic influenza outbreaks. The innate host defense component surfactant protein D (SP-D) interacts with glycans on the hemagglutinin of IAV and contributes to protection against IAV infection in mammals. This study shows that a recombinant trimeric neck lectin fragment derived from porcine SP-D (pSP-D) exhibits profound inhibitory activity against IAV, in contrast to comparable fragments derived from human SP-D. Crystallographic analysis of the pSP-D fragment complexed with a viral sugar component shows that a unique tripeptide loop alters the lectin site conformation of pSP-D. Molecular dynamics simulations highlight the role of this flexible loop, which adopts a more stable conformation upon sugar binding and may facilitate binding to viral glycans through contact with distal portions of the branched mannoside. The combined data demonstrate that porcine-specific structural features of SP-D contribute significantly to its distinct anti-IAV activity. These findings could help explain why pigs serve as important reservoirs for newly emerging pathogenic IAV strains. 相似文献
4.
Safikur Rahman Md. Tabish Rehman Laishram R. Singh Marina Warepam Faizan Ahmad Tanveer Ali Dar 《PloS one》2015,10(3)
Cellular methylamines are osmolytes (low molecular weight organic compounds) believed to offset the urea’s harmful effects on the stability and function of proteins in mammalian kidney and marine invertebrates. Although urea and methylamines are found at 2:1 molar ratio in tissues, their opposing effects on protein structure and function have been questioned on several grounds including failure to counteraction or partial counteraction. Here we investigated the possible involvement of cellular salt, NaCl, in urea-methylamine counteraction on protein stability and function. We found that NaCl mediates methylamine counteracting system from no or partial counteraction to complete counteraction of urea’s effect on protein stability and function. These conclusions were drawn from the systematic thermodynamic stability and functional activity measurements of lysozyme and RNase-A. Our results revealed that salts might be involved in protein interaction with charged osmolytes and hence in the urea-methylamine counteraction. 相似文献
5.
Elena López-Rodríguez Olga?Lucía Ospina Mercedes Echaide H.?William Taeusch Jesús Pérez-Gil 《Biophysical journal》2012,103(7):1451-1459
Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant’s interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories. 相似文献
6.
Systematic mappings of the effects of protein mutations are becoming increasingly popular. Unexpectedly, these experiments often find that proteins are tolerant to most amino acid substitutions, including substitutions in positions that are highly conserved in nature. To obtain a more realistic distribution of the effects of protein mutations, we applied a laboratory drift comprising 17 rounds of random mutagenesis and selection of M.HaeIII, a DNA methyltransferase. During this drift, multiple mutations gradually accumulated. Deep sequencing of the drifted gene ensembles allowed determination of the relative effects of all possible single nucleotide mutations. Despite being averaged across many different genetic backgrounds, about 67% of all nonsynonymous, missense mutations were evidently deleterious, and an additional 16% were likely to be deleterious. In the early generations, the frequency of most deleterious mutations remained high. However, by the 17th generation, their frequency was consistently reduced, and those remaining were accepted alongside compensatory mutations. The tolerance to mutations measured in this laboratory drift correlated with sequence exchanges seen in M.HaeIII’s natural orthologs. The biophysical constraints dictating purging in nature and in this laboratory drift also seemed to overlap. Our experiment therefore provides an improved method for measuring the effects of protein mutations that more closely replicates the natural evolutionary forces, and thereby a more realistic view of the mutational space of proteins. 相似文献
7.
We study the impact of the addition of particles of a range of sizes on the phase transition behavior of lung surfactant under compression. Charged particles ranging from micro- to nanoscale are deposited on lung surfactant films in a Langmuir trough. Surface area versus surface pressure isotherms and fluorescent microscope observations are utilized to determine changes in the phase transition behavior. We find that the deposition of particles close to 20 nm in diameter significantly impacts the coexistence of the liquid-condensed phase and liquid-expanded phase. This includes morphological changes of the liquid-condensed domains and the elimination of the squeeze-out phase in isotherms. Finally, a drastic increase of the domain fraction of the liquid-condensed phase can be observed for the deposition of 20-nm particles. As the particle size is increased, we observe a return to normal phase behavior. The net result is the observation of a critical particle size that may impact the functionality of the lung surfactant during respiration. 相似文献
8.
Akihisa?T. Kodama Chin-Chang Kuo Thomas Boatwright Michael Dennin 《Biophysical journal》2014,107(7):1573-1581
We study the impact of the addition of particles of a range of sizes on the phase transition behavior of lung surfactant under compression. Charged particles ranging from micro- to nanoscale are deposited on lung surfactant films in a Langmuir trough. Surface area versus surface pressure isotherms and fluorescent microscope observations are utilized to determine changes in the phase transition behavior. We find that the deposition of particles close to 20 nm in diameter significantly impacts the coexistence of the liquid-condensed phase and liquid-expanded phase. This includes morphological changes of the liquid-condensed domains and the elimination of the squeeze-out phase in isotherms. Finally, a drastic increase of the domain fraction of the liquid-condensed phase can be observed for the deposition of 20-nm particles. As the particle size is increased, we observe a return to normal phase behavior. The net result is the observation of a critical particle size that may impact the functionality of the lung surfactant during respiration. 相似文献
9.
Cellular traction forces, resulting in cell-substrate physical interactions, are generated by actin-myosin complexes and transmitted to the extracellular matrix through focal adhesions. These processes are highly dynamic under physiological conditions and modulate cell migration. To better understand the precise dynamics of cell migration, we measured the spatiotemporal redistribution of cellular traction stresses (force per area) during fibroblast migration at a submicron level and correlated it with nuclear translocation, an indicator of cell migration, on a physiologically relevant extracellular matrix mimic. We found that nuclear translocation occurred in pulses whose magnitude was larger on the low ligand density surfaces than on the high ligand density surfaces. Large nuclear translocations only occurred on low ligand density surfaces when the rear traction stresses completely relocated to a posterior nuclear location, whereas such relocation took much longer time on high ligand density surfaces, probably due to the greater magnitude of traction stresses. Nuclear distortion was also observed as the traction stresses redistributed. Our results suggest that the reinforcement of the traction stresses around the nucleus as well as the relaxation of nuclear deformation are critical steps during fibroblast migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. A traction gradient foreshortening model was proposed to explain how the relocation of rear traction stresses leads to pulsed fibroblast migration. 相似文献
10.
《Journal of molecular biology》2021,433(3):166749
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface. 相似文献
11.
目的:研究严重急性呼吸系统综合征冠状病毒(SARS-CoV)N蛋白对甘油三酯和总胆固醇含量的影响。方法:检测分析144例SARS患者甘油三脂和总胆固醇含量在发病后的变化;将小鼠随机分组,分别注射生理盐水和SARS-CoV N蛋白,连续给药9 d后检测小鼠血清中甘油三酯和总胆固醇含量的变化。结果:SARS患者的甘油三酯和总胆固醇含量随发病时间有升高变化(P0.05),在发病40 d前后甘油三酯和总胆固醇含量超标的病例数占本时间段内的病例数的比例显著高于其他时间段,而且超标的含量也明显升高。SARS-CoV N蛋白使小鼠体重明显高于对照组(P0.05),甘油三酯含量在39和51 d明显高于对照组(P0.05),总胆固醇含量在21和39 d也明显高于对照组(P0.05)。结论:SARS-CoV N蛋白可以升高小鼠的甘油三酯和总胆固醇的含量,其升高最为明显的时间段与SARS患者的甘油三酯和总胆固醇含量升高的时间段基本一致。由此推测,SARS-CoV N蛋白可能是促使SARS患者发病后甘油三酯和总胆固醇含量升高的重要原因。 相似文献
12.
Structural Changes of Surfactant Protein A Induced by Cations Reorient the Protein on Lipid Bilayers
Nades Palaniyar Ross A Ridsdale Chet E Holterman Kevin Inchley Fred Possmayer George Harauz 《Journal of structural biology》1998,122(3):297-310
Surfactant protein A (SP-A) is an octadecameric hydrophilic glycoprotein and is the major protein component of pulmonary surfactant. This protein complex plays several roles in the body, such as regulation of surfactant secretion, recycling and adsorption of surfactant lipids, and non-serum-induced immune response. Many of SP-A's activities are dependent upon the presence of cations, especially calcium. Here, we have studiedin vitrothe effect of cations on the interaction of purified bovine SP-A with phospholipid vesicles made of dipalmitoylphosphatidylcholine and unsaturated phosphatidylcholine. We have found that SP-A octadecamers exist in an “opened-bouquet” conformation in the absence of cations and interact with lipid membranes via one or two globular headgroups. Calcium-induced structural changes in SP-A lead to the formation of a clearly identifiable stem in a “closed-bouquet” conformation. This change, in turn, seemingly results in all of SP-A's globular headgroups interacting with the lipid membrane surface and with the stem pointing away from the membrane surface. These results represent direct evidence that the headgroups of SP-A (comprising carbohydrate recognition domains), and not the stem (comprising the amino-terminus and collagen-like region), interact with lipid bilayers. Our data support models of tubular myelin in which the headgroups, not the tails, interact with the lipid walls of the lattice. 相似文献
13.
Role of Protein Cavities on Unfolding Volume Change and on Internal Dynamics under Pressure 下载免费PDF全文
Patrizia Cioni 《Biophysical journal》2006,91(9):3390-3396
The effects of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (DeltaV(0)) of azurin from Pseudomonas aeruginosa and on the internal dynamics of the protein fold under pressure were probed by the fluorescence and phosphorescence emission of Trp-48, deeply buried in the compact hydrophobic core of the macromolecule. Pressure-induced unfolding, monitored by the shift of the center of mass of the fluorescence spectrum, showed that DeltaV(0) is in the range of 60-70 mL/mol, not significantly different between cavity mutants and compact azurin species such as the wild-type and the mutant C3A/C26A, in which the superficial disulphide has been removed. The lack of extra volume in F110S and I7S proves that the engineered cavities, 40 A(3) in I7S and 100 A(3) in F110S, are filled with water molecules. Changes in flexibility of the protein matrix around the chromophore were monitored by the intrinsic phosphorescence lifetime (tau(0)). The application of pressure in the predenaturation range initially decreases the internal flexibility of azurin, the trend eventually reverting on approaching unfolding. The main difference between compact folds, wild-type and C3A/C26A, and cavity mutants is that the inversion point is powered from approximately 3 kbar to 1.5 kbar for F110S and <0.1 kbar for I7S, meaning that in the latter species pressure-induced internal hydration dominates very early over any compaction of the globular fold resulting from the reduction of internal free volume. The similar response between wild-type and the significantly less-stable C3A/C26A mutant suggests that thermodynamic stability per se is not the dominant factor regulating pressure-induced internal hydration of proteins. 相似文献
14.
Three protein kinases which phosphorylate histone were isolatedfrom cellular extract of Lemna plants. They were separated byelution from DEAE-Sephacel column and referred to as PI, PITand PHI. The PI protein kinase activity was partially inhibitedby 10µM cyclic AMP, cyclic GMP or cyclic IMP, while thePII enzyme was activated in the presence of these cyclic nucleotides.The PIII enzyme was cAMPindependent, but slightly inhibitedby cyclic CMP and cyclic UMP. The molecular weights of thesethree protein kinases were 165,000, 85,000 and 145,000, respectively,as estimated from Sephacryl S-300 gel filtration. A single cyclicAMP-binding protein was detected in the PII enzyme fractionby using the photoaffinity cAMP-analogue, 8-N3-cAMP. The proteinwhich specifically bound [3H]-8-N3-cAMP had an apparent molecularweight of 48,000 as determined by SDS-polyacrylamide gel electrophoresis.The phosphorylation of cellular proteins in Lemna was examinedby SDS-polyacrylamide gel electrophoresis. Four phosphorylatedpolypeptides were detected, the phosphorylations of which werestimulated by cAMP. The molecular weights of these four polypeptideswere 59,000, 19,000, 16,000 and 14,000, respectively. (Received January 26, 1983; Accepted April 13, 1983) 相似文献
15.
Introduction
Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs), particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.Objective
To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.Material and Methods
Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin – acetic acid; guar gum – propionic acid; or a mixture – butyric acid). At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.Results and Discussion
Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet. 相似文献16.
The hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63–78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B. 2H NMR has been used to examine the effect of SP-B63–78 on the phase behavior and dynamics of bicellar lipid dispersions containing the longer chain phospholipids DMPC-d54 and DMPG and the shorter chain lipid DHPC mixed with a 3∶1∶1 molar ratio. Below the gel-to-liquid crystal phase transition temperature of the longer chain components, bicellar mixtures form small, rapidly reorienting disk-like particles with shorter chain lipid components predominantly found around the highly curved particle edges. With increasing temperature, the particles coalesce into larger magnetically-oriented structures and then into more extended lamellar phases. The susceptibility of bicellar particles to coalescence and large scale reorganization makes them an interesting platform in which to study peptide-induced interactions between lipid assemblies. SP-B63–78 is found to lower the temperature at which the orientable phase transforms to the more extended lamellar phase. The peptide also changes the spectrum of motions contributing to quadrupole echo decay in the lamellar phase. The way in which the peptide alters interactions between bilayered micelle structures may provide some insight into some aspects of the role of full-length SP-B in maintaining a functional surfactant layer in lungs. 相似文献
17.
Effects of Protein, Lipids, and Surfactants on the Antimicrobial Activity of Synthetic Steroids 下载免费PDF全文
Three 4-azacholestanes and two A-norcholestanes were inactivated by 10 and 20% bovine serum and by 1.0, 2.5, and 5.0% sheep blood. The five compounds exhibited hemolytic properties when tested with 2% sheep blood and 2% human blood. These cholestanes inhibited Streptococcus pyogenes and were completely inactivated by 0.1% lecithin. Tween 80 was comparable to lecithin in causing the inactivation of steroids; 1% polyethylene glycol-4000 was inert; 1% Tween 20 and 1.0% Span 20 caused the inactivation of 3β,4-dimethyl-4-aza-5α-cholestane (ND-307). The sodium salts of four fatty acids, oleate, stearate, deoxycholate, and lauryl sulfate (0.1 to 1.0 mg/ml), effectively interfered with the action of ND-307. The steroids appear to have some properties similar to those of antimicrobial surfactants of the cationic type but have certain distinct features. 相似文献
18.
目的:探讨口服阿托伐他汀片对慢性阻塞性肺疾病(chronic obstructive pulmonary Disease,COPD)合并肺动脉高压(pul-monary hypertension,PH)患者外周血ROCK2激酶活性及肺动脉压力的影响。方法:选取COPD合并PH患者60例为研究对象,并将其随机分为对照组(给予吸氧、抗感染、化痰、平喘等基础治疗)和阿托伐他汀治疗组(在基础治疗的基础上给予阿托伐他汀片20mg/d治疗);随访观察周期12周,于试验开始前和结束后检测外周血ROCK2的活性,利用彩色多普勒检测肺动脉压力的变化,肺功能变化(测定FEV1,FVC)。结果:与对照组比较,阿托伐他汀治疗可显著降低患者血浆中ROCK2的水平(P〈0.01);降低患者的肺动脉压力,改善患者的肺功能(FEV1,FVC),P均〈0.05。结论:在常规吸氧、抗感染等治疗的基础上,联合应用阿托伐他汀可显著降低ROCK2激酶的活性和肺动脉压力,从而改善肺功能。 相似文献
19.
Johannes Schiebel Andrew Chang Sonam Shah Yang Lu Li Liu Pan Pan Maria W. Hirschbeck Mona Tareilus Sandra Eltschkner Weixuan Yu Jason E. Cummings Susan E. Knudson Gopal R. Bommineni Stephen G. Walker Richard A. Slayden Christoph A. Sotriffer Peter J. Tonge Caroline Kisker 《The Journal of biological chemistry》2014,289(23):15987-16005
Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. , a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms. CG400549相似文献
20.
Asma Aloui Walid Briki Hana Baklouti Hamdi Chtourou Tarak Driss Anis Chaouachi Karim Chamari Nizar Souissi 《PloS one》2015,10(8)