首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron-tunneling data suggest that a noncovalently-bonded complex of three molecules, two recognition molecules that present hydrogen-bond donor and acceptor sites via a carboxamide group, and a DNA base, remains bound for seconds. This is surprising, given that imino-proton exchange rates show that basepairs in a DNA double helix open on millisecond timescales. The long lifetime of the three-molecule complex was confirmed using force spectroscopy, but measurements on DNA basepairs are required to establish a comparison with the proton-exchange data. Here, we report on a dynamic force spectroscopy study of complexes between the bases adenine and thymine (A-T, two-hydrogen bonds) and 2-aminoadenine and thymine (2AA-T, three-hydrogen bonds). Bases were tethered to an AFM probe and mica substrate via long, covalently linked polymer tethers. Data for bond-survival probability versus force and the rupture-force distributions were well fitted by the Bell model. The resulting lifetime of the complexes at zero pulling force was ~2 s for two-hydrogen bonds (A-T) and ~4 s for three-hydrogen bonds (2AA-T). Thus, DNA basepairs in an AFM pulling experiment remain bonded for long times, even without the stabilizing influence of base-stacking in a double helix. This result suggests that the pathways for opening, and perhaps the open states themselves, are very different in the AFM and proton-exchange measurements.  相似文献   

2.
3.
4.
Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes.  相似文献   

5.
SfiI belongs to a family of restriction enzymes that function as tetramers, binding two recognition regions for the DNA cleavage reaction. The SfiI protein is an attractive and convenient model for studying synaptic complexes between DNA and proteins capable of site-specific binding. The enzymatic action of SfiI has been very well characterized. However, the properties of the complex before the cleavage reaction are not clear. We used single-molecule force spectroscopy to analyze the strength of interactions within the SfiI-DNA complex. In these experiments, the stability of the synaptic complex formed by the enzyme and two DNA duplexes was probed in a series of approach-retraction cycles. In order to do this, one duplex was tethered to the surface and the other was tethered to the probe. The complex was formed by the protein present in the solution. An alternative setup, in which the protein was anchored to the surface, allowed us to probe the stability of the complex formed with only one duplex in the approach-retraction experiments, with the duplex immobilized at the probe tip. Both types of complexes are characterized by similar rupture forces. The stability of the complex was determined by measuring the dependence of rupture forces on force loading rates (dynamic force spectroscopy) and the results suggest that the dissociation reaction of the SfiI-DNA complex has a single energy barrier along the dissociation path. Dynamic force spectroscopy was instrumental in revealing the role of the 5 bp spacer region within the palindromic recognition site on DNA-SfiI in the stability of the complex. The data show that, although the change of non-specific sequence does not alter the position of the activation barrier, it changes values of the off rates significantly.  相似文献   

6.
7.
Helicases utilize the energy of ATP hydrolysis to unwind double-stranded DNA while translocating on the DNA. Mechanisms for melting the duplex have been characterized as active or passive, depending on whether the enzyme actively separates the base pairs or simply sequesters single-stranded DNA (ssDNA) that forms due to thermal fraying. Here, we show that Dda translocates unidirectionally on ssDNA at the same rate at which it unwinds double-stranded DNA in both ensemble and single-molecule experiments. Further, the unwinding rate is largely insensitive to the duplex stability and to the applied force. Thus, Dda transduces all of its translocase activity into DNA unwinding activity so that the rate of unwinding is limited by the rate of translocation and that the enzyme actively separates the duplex. Active and passive helicases have been characterized by dividing the velocity of DNA unwinding in base pairs per second (Vun) by the velocity of translocation on ssDNA in nucleotides per second (Vtrans). If the resulting fraction is 0.25, then a helicase is considered to be at the lower end of the “active” range. In the case of Dda, the average DNA unwinding velocity was 257 ± 42 bp/s, and the average translocation velocity was 267 ± 15 nt/s. The Vun/Vtrans value of 0.96 places Dda in a unique category of being an essentially “perfectly” active helicase.  相似文献   

8.
B-S transition in short oligonucleotides   总被引:2,自引:0,他引:2  
Stretching experiments with long double-stranded DNA molecules in physiological ambient revealed a force-induced transition at a force of 65 pN. During this transition between B-DNA and highly overstretched S-DNA the DNA lengthens by a factor of 1.7 of its B-form contour length. Here, we report the occurrence of this so-called B-S transition in short duplexes consisting of 30 basepairs. We employed atomic-force-microscope-based single molecule force spectroscopy to explore the unbinding mechanism of two short duplexes containing 30 or 20 basepairs by pulling at the opposite 5' termini. For a 30-basepair-long DNA duplex the B-S transition is expected to cause a length increase of 6.3 nm and should therefore be detectable. Indeed 30% of the measured force-extension curves exhibit a region of constant force (plateau) at 65 pN, which corresponds to the B-S transition. The observed plateaus show a length between 3 and 7 nm. This plateau length distribution indicates that the dissociation of a 30-basepair duplex mainly occurs during the B-S transition. In contrast, the measured force-extension curves for a 20-basepair DNA duplex exhibited rupture forces below 65 pN and did not show any evidence of a B-S transition.  相似文献   

9.
The dynamics of DNA topology during replication are still poorly understood. Bacterial plasmids are negatively supercoiled. This underwinding facilitates strand separation of the DNA duplex during replication. Leading the replisome, a DNA helicase separates the parental strands that are to be used as templates. This strand separation causes overwinding of the duplex ahead. If this overwinding persists, it would eventually impede fork progression. In bacteria, DNA gyrase and topoisomerase IV act ahead of the fork to keep DNA underwound. However, the processivity of the DNA helicase might overcome DNA gyrase and topoisomerase IV. It was proposed that the overwinding that builds up ahead of the fork could force it to swivel and diffuse this positive supercoiling behind the fork where topoisomerase IV would also act to maintain replicating the DNA underwound. Putative intertwining of sister duplexes in the replicated region are called precatenanes. Fork swiveling and the formation of precatenanes, however, are still questioned. Here, we used classical genetics and high resolution two-dimensional agarose gel electrophoresis to examine the torsional tension of replication intermediates of three bacterial plasmids with the fork stalled at different sites before termination. The results obtained indicated that precatenanes do form as replication progresses before termination.  相似文献   

10.
A DNA triplex is formed through binding of a third strand to the major groove of a duplex. Due to the high charge density of a DNA triplex, metal ions are critical for its stability. We recently developed the tightly bound ion (TBI) model for ion-nucleic acids interactions. The model accounts for the potential correlation and fluctuations of the ion distribution. We now apply the TBI model to analyze the ion dependence of the thermodynamic stability for DNA triplexes. We focus on two experimentally studied systems: a 24-base DNA triplex and a pair of interacting 14-base triplexes. Our theoretical calculations for the number of bound ions indicate that the TBI model provides improved predictions for the number of bound ions than the classical Poisson-Boltzmann (PB) equation. The improvement is more significant for a triplex, which has a higher charge density than a duplex. This is possibly due to the higher ion concentration around the triplex and hence a stronger ion correlation effect for a triplex. In addition, our analysis for the free energy landscape for a pair of 14-mer triplexes immersed in an ionic solution shows that divalent ions could induce an attractive force between the triplexes. Furthermore, we investigate how the protonated cytosines in the triplexes affect the stability of the triplex helices.  相似文献   

11.
12.
13.
Decay of 125I produces a shower of low energy electrons (Auger electrons) that cause strand breaks in DNA in a distance-dependent manner with 90% of the breaks located within 10 bp from the decay site. We studied strand breaks in RNA molecules produced by decay of 125I incorporated into complementary DNA oligonucleotides forming RNA/DNA duplexes with the target RNA. The frequencies and distribution of the breaks were unaffected by the presence of the free radical scavenger dimethyl sulfoxide (DMSO) or by freezing of the samples. Therefore, as was the case with DNA, most of the breaks in RNA were direct rather than caused by diffusible free radicals produced in water. The distribution of break frequencies at individual bases in RNA molecules is narrower, with a maximum shifted to the 3′-end with respect to the distribution of breaks in DNA molecules of the same sequence. This correlates with the distances from the radioiodine to the sugars of the corresponding bases in A-form (RNA/DNA duplex) and B-form (DNA/DNA duplex) DNA. Interestingly, when 125I was located close to the end of the antisense DNA oligonucleotide, we observed breaks in RNA beyond the RNA/DNA duplex region. This was not the case for a control DNA/DNA hybrid of the same sequence. We assume that for the RNA there is an interaction between the RNA/DNA duplex region and the single-stranded RNA tail, and we propose a model for such an interaction. This report demonstrates that 125I radioprobing of RNA could be a powerful method to study both local conformation and global folding of RNA molecules.  相似文献   

14.
We present a novel application of active voltage control of DNA captured in a nanopore to regulate the amount of time the DNA is available to molecules in the bulk phase that bind to the DNA. In this work, the control method is used to measure hybridization between a single molecule of DNA captured in a nanopore and complementary oligonucleotides in the bulk phase. We examine the effect of oligonucleotide length on hybridization, and the effect of DNA length heterogeneity on the measurements. Using a mathematical model, we are able to deduce the binding rate of complementary oligonucleotides, even when DNA samples in experiments are affected by heterogeneity in length. We analyze the lifetime distribution of DNA duplexes that are formed in the bulk phase and then pulled against the pore by reversing the voltage. The lifetime distribution reveals several dissociation modes. It remains to be resolved whether these dissociation modes are due to DNA heterogeneity or correspond to different states of duplex DNA. The control method is unique in its ability to detect single-molecule complex assembly in the bulk phase, free from external force and with a broad (millisecond-to-second) temporal range.  相似文献   

15.
To our knowledge, we have developed a novel temperature-jump optical tweezers setup that changes the temperature locally and rapidly. It uses a heating laser with a wavelength that is highly absorbed by water so it can cover a broad range of temperatures. This instrument can record several force-distance curves for one individual molecule at various temperatures with good thermal and mechanical stability. Our design has features to reduce convection and baseline shifts, which have troubled previous heating-laser instruments. As proof of accuracy, we used the instrument to carry out DNA unzipping experiments in which we derived the average basepair free energy, entropy, and enthalpy of formation of the DNA duplex in a range of temperatures between 5°C and 50°C. We also used the instrument to characterize the temperature-dependent elasticity of single-stranded DNA (ssDNA), where we find a significant condensation plateau at low force and low temperature. Oddly, the persistence length of ssDNA measured at high force seems to increase with temperature, contrary to simple entropic models.  相似文献   

16.
Nanopore unzipping of individual DNA hairpin molecules   总被引:1,自引:0,他引:1       下载免费PDF全文
We have used the nanometer scale alpha-Hemolysin pore to study the unzipping kinetics of individual DNA hairpins under constant force or constant loading rate. Using a dynamic voltage control method, the entry rate of polynucleotides into the pore and the voltage pattern applied to induce hairpin unzipping are independently set. Thus, hundreds of unzipping events can be tested in a short period of time (few minutes), independently of the unzipping voltage amplitude. Because our method does not entail the physical coupling of the molecules under test to a force transducer, very high throughput can be achieved. We used our method to study DNA unzipping kinetics at small forces, which have not been accessed before. We find that in this regime the static unzipping times decrease exponentially with voltage with a characteristic slope that is independent of the duplex region sequence, and that the intercept depends strongly on the duplex region energy. We also present the first nanopore dynamic force measurements (time varying force). Our results are in agreement with the approximately logV dependence at high V (where V is the loading rate) observed by other methods. The extension of these measurements to lower loading rates reveals a much weaker dependence on V.  相似文献   

17.
Poland D 《Biopolymers》2006,81(2):127-135
In this article we use the published heat capacity data of Dragan et al. (J Mol Biol 2003, 327, 293-411) for a short DNA duplex to calculate the enthalpy probability distribution for this species as a function of temperature. Our approach is based on a procedure that we developed (Poland, D. J Chem Phys 2000, 112, 6554) whereby one obtains moments of the enthalpy distribution from the temperature dependence of the heat capacity. One then uses the maximum-entropy method to construct the enthalpy probability distribution from the set of enthalpy moments. For the DNA duplex treated here the heat capacity goes through a maximum as a function of temperature reflecting the unwinding of the duplex structure. In the neighborhood of the heat capacity maximum, the enthalpy distribution functions show a clear bimodal structure, indicating the coexistence of two distinct states, the duplex and the single-strand state. The probabilities of theses two states can be estimated from the enthalpy distribution functions and can be used to calculate the temperature dependence of the equilibrium constant for the unwinding of the DNA duplex. This example illustrates that the temperature dependence of the heat capacity can be used to give a detailed picture of conformational transitions in biological macromolecules. In particular, the structure of the enthalpy distribution in this case allows one to see the temperature evolution of the two-state distribution in detail.  相似文献   

18.
We probe DNA hybridization kinetics by measuring the lifetime distribution of single 16-bp duplexes under thermal dissociation. Our unique approach, based on two DNA-coated microspheres in an extended optical tweezer, allows the study of single duplex DNA molecules under negligible molecular tension. In contrast to earlier experiments, we find a stretched exponential lifetime distribution, which is likely due to dissociation proceeding via a number of competing pathways between highly force-sensitive intermediate states. Similar measurements of microspheres linked by multiple DNA bridges find they have unexpected short bound lifetimes, also consistent with force sensitivity.  相似文献   

19.
20.
To initiate homologous recombination, sequence similarity between two DNA molecules must be searched for and homology recognized. How the search for and recognition of homology occurs remains unproven. We have examined the influences of DNA topology and the polarity of RecA–single-stranded (ss)DNA filaments on the formation of synaptic complexes promoted by RecA. Using two complementary methods and various ssDNA and duplex DNA molecules as substrates, we demonstrate that topological constraints on a small circular RecA–ssDNA filament prevent it from interwinding with its duplex DNA target at the homologous region. We were unable to detect homologous pairing between a circular RecA–ssDNA filament and its relaxed or supercoiled circular duplex DNA targets. However, the formation of synaptic complexes between an invading linear RecA–ssDNA filament and covalently closed circular duplex DNAs is promoted by supercoiling of the duplex DNA. The results imply that a triplex structure formed by non-Watson–Crick hydrogen bonding is unlikely to be an intermediate in homology searching promoted by RecA. Rather, a model in which RecA-mediated homology searching requires unwinding of the duplex DNA coupled with local strand exchange is the likely mechanism. Furthermore, we show that polarity of the invading RecA–ssDNA does not affect its ability to pair and interwind with its circular target duplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号