首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This report is an ultrastructural analysis of the organization of the isolated oral apparatus of Tetrahymena pyriformis, strain WH-6, syngen 1. Attention has been focused on the organization of microtubules and filaments in oral apparatus membranelles. Oral apparatus membranellar basal bodies were characterized with respect to structural differentiations at the distal and proximal ends. The distal region of membranellar basal bodies contains the basal plate, accessory microtubules and filaments. The proximal end contains a dense material from which emanate accessory microtubules and filaments. There are at least two possibly three different arrangements of accessory structures at the proximal end of membranellar basal bodies. All membranellar basal bodies appear to have a dense material at the proximal end from which filaments emanate. Some of these basal bodies have accessory microtubules and filaments emanating from this dense material. A possible third arrangement is represented by basal bodies which have lateral projections, from the proximal end, of accessory microtubules and filaments which constitute cross or peripheral connectives. There are at least three examples of direct associations between oral apparatus microtubules and filaments: (1) filaments which form links between basal body triplet microtubules, (2) filaments which link the material of the basal plate to internal basal body microtubules, (3) filaments which link together microtubule bundles from membranellar connectives. KCl extraction of the isolated oral apparatus resulted in the selective solubilization of oral apparatus basal bodies, remnants of ciliary axonemes and fused basal plates. Based on their response to KCl extraction two distinct sets of morphologically similar micro tubules can be identified: (a) microtubules which constitute the internal structure of basal bodies and ciliary axonemes, (b) microtubules which constitute the fiber connectives between basal bodies.  相似文献   

2.
Summary The preservation of nine plant virus strains of tobamovirus and cucumovirus groups after freeze-drying in different lyophilic forms was examined. Quantitative studies on survival were performed. In tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV), accelerated storage test at 70 – 100°C was applied for screening 20 protecting media. A perspective medium, 5% sorbitol, 3.6% dextran, for plant viruses lyophilization with high cryo- and xeroprotective effects was found.  相似文献   

3.
The effect of vanadate on the ATP-induced disruption of trypsin-treated axonemes and the ATP-induced straightening of rigor wave preparations of sea urchin sperm was investigated. Addition of ATP to a suspension of trypsin-treated axonemes results in a rapid decrease in turbidity (optical density measured at 350 nm) concomitant with the disruption of the axonemes by sliding between microtubules to form tangles of connected doublet microtubules (Summers and Gibbons, 1971; Sale and Satir, 1977). For axonemes digested to approximately 93 percent of their initial turbidity, 5 {muM} vanadate completely inhibits the ATP-induced decrease in turbidity and the axonemes maintain their structural integrity. However, with axonemes digested to approximately 80 percent of their initial turbidity, vanadate fails to inhibit the ATP-induced decrease in turbidity and the ATP-induced structural disruption of axonemes, even when the vanadate concentration is raised as high as 100 μm. For such axonemes digested to 80 percent of their initial turbidity, the form of ATP-induced structural changes, in the presence of 25 μM vanadate, was observed by dark-field light microscopy and revealed that the axonemes become disrupted into curved, isolated doublet microtubules, small groups of doublet microtubules, and “banana peel” structures in which tubules have peeled back from the axoneme. Addition of 5 μM ATP to rigor wave sperm, which were prepared by abrupt removal of ATP from reactivated sperm, causes straightening of the rigor waves within 1 min, and addition of more than 10 μM ATP causes resumption of flagellar beating. Addition of 40 μM vanadate to the rigor wave sperm does not inhibit straightening of the rigor waves of 2 μM-1 mM ATP, although oscillatory beating is completely inhibited. These results suggest that vanadate inhibits the mechanochemical cycle of dyein at a step subsequent to the MgATP(2-)-induced release of the bridged dynein arms.  相似文献   

4.
Cell-to-cell progression of tobacco mosaic virus (TMV) infection in plants depends on virus-encoded movement protein (MP). Here we show that a conserved sequence motif in tobamovirus MPs shares similarity with a region in tubulins that is proposed to mediate lateral contacts between microtubule protofilaments. Point mutations in this motif confer temperature sensitivity to microtubule association and viral-RNA intercellular-transport functions of the protein, indicating that MP-interacting microtubules are functionally involved in the transport of vRNA to plasmodesmata. Moreover, we show that MP interacts with microtubule-nucleation sites. Together, our results indicate that MP may mimic tubulin assembly surfaces to propel vRNA transport by a dynamic process that is driven by microtubule polymerization.  相似文献   

5.
6.
7.
Recent advances in the application of solid state nmr spectroscopy to uniformly aligned biopolymers have opened a window through which to view the detailed structure of biological macromolecules that are unable to be seen with standard techniques for structure determination such as x-ray diffraction. Atomic resolution structural details are obtained from solid state nmr data in the form of bond orientations, which yield the relative positions of specific atoms within the molecule. For static aligned systems such as fibers, in which rapid reorientation about the axis of alignment does not occur, it has generally been necessary to perform trial and error line-shape simulations to extract structural details from nmr spectra arising from a single type of nuclear spin interaction. In the present work, a new method is developed in which solid state 15N-nmr spectra obtained from uniaxially aligned molecules placed with the axis of alignment both parallel and perpendicular to the magnetic field are analyzed to yield the orientations of specific molecular bonds. Analytical expressions are derived that utilize spectral features read from 15N chemical shift anisotropy line shapes to calculate a discrete number of possible orientations for a specific site. The 15N-1H dipolar interaction is employed to further narrow the number of unique orientations possible for a given site. With this method, a neighborhood of possible orientations is quickly determined, and full line-shape simulations within this region of allowed space can be performed to refine the limits of orientation. This technique demonstrates the use of a single type of isotopic label to determine the orientation of a specific molecular group such as a peptide plane within a protein. Results from the application of this method to the Bombyx mori silk fibroin protein provide structural detail that is consistent with currently accepted structural models based on fiber diffraction studies. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
B G McLean  J Zupan    P C Zambryski 《The Plant cell》1995,7(12):2101-2114
Tobacco mosaic virus movement protein P30 complexes with genomic viral RNA for transport through plasmodesmata, the plant intercellular connections. Although most research with P30 focuses on its targeting to and gating of plasmodesmata, the mechanisms of P30 intracellular movement to plasmodesmata have not been defined. To examine P30 intracellular localization, we used tobacco protoplasts, which lack plasmodesmata, for transfection with plasmids carrying P30 coding sequences under a constitutive promoter and for infection with tobacco mosaic virus particles. In both systems, P30 appears as filaments that colocalize primarily with microtubules. To a lesser extent, P30 filaments colocalize with actin filaments, and in vitro experiments suggested that P30 can bind directly to actin and tubulin. This association of P30 with cytoskeletal elements may play a critical role in intracellular transport of the P30-viral RNA complex through the cytoplasm to and possibly through plasmodesmata.  相似文献   

9.
Summary Actin filaments in cultured tobacco cells were stained by rhodamine-phalloidin after pretreatment with 100 M m-maleidobenzoyl N-hydroxysuccinimide ester (MBS) followed by formaldehyde fixation. The use of MBS prior to formaldehyde fixation enabled us to visualize fine, transversely arranged cortical actin filaments in a majority of interphase tobacco cells. It also enabled us to double-stain fine actin filaments and microtubules in the same cells. The pattern of actin filaments and that of microtubules in the cortical region of a single tobacco cell bore a close resemblance to each other. The method which employed MBS was found to be useful also in visualizing fine cortical actin filaments in inner epidermal cells of onion bulbs.Rhodamine-phalloidin seemed to induce the bundling of actin filaments both tobacco cells and in onion cells when it was applied to the cells which had not been subjected to fixation, indicating that the application of fluorescent-dye-labeled phallotoxins to unfixed cells involves the risk of observing artifically bundled actin filaments.  相似文献   

10.
A Tobamovirus Causing Heavy Losses in Protected Pepper Crops in Spain   总被引:4,自引:0,他引:4  
During a four-year (1982–1985) survey of plant viruses infecting pepper cultivars grown under plastic in the Southeastern region of Spain, a tobamovirus was found to be the major disease agent of this crop. The virus produces slight or no symptoms on the leaves, but causes chlorotic mottling, malformation and reduction in size with occasional necrosis on the fruits and was able to infect all commercial pepper cultivars tested, including those resistant to other tobamoviruses, causing a catastrophic disease. The biological and serological characterization of the virus showed that it is very similar to pepper mild mottle virus (PMMV) (Wetter et al. 1984) and therefore we have termed it as Spanish strain of PMMV (PMMV-S). The need of grouping all the so-called “pepper strains” of tobacco mosaic virus (TMV) as a new distinct member of the tobamovirus group with the name of PMMV is emphasized.  相似文献   

11.
A study was made of the coat protein (CP) of thermosensitive semidefective tobacco mosaic virus strain K1 (TMV-K1). In contrast to CP of other TMV strains, K1 CP showed high nonspecific aggregation and did not form normal two-layered cylindrical aggregates. In none of the conditions tested, K1 CP formed virions with cognate K1 RNAin vitro. The abnormal properties were attributed to substitution Lys53→Glu differentiating the K1 CP from those of other tobamoviruses. It is assumed that the high structural plasticity allows the tobamovirus virions to incorporate CP subunits even with unfavorable amino acid changes.  相似文献   

12.
The complete nucleotide sequence of Chinese rape mosaic virus has been determined. The virus is a member of the tobamovirus genus of plant virus and is able to infect Arabidopsis thaliana (L.) Heynh systemically. The analysis of the sequence shows a gene array that seems to be characteristic of crucifer tobamoviruses and which is slightly different from the one most frequently found in tobamoviruses. Based on gene organization and on comparisons of sequence homologies between members of the tobamoviruses, a clustering of crucifer tobamoviruses is proposed that groups the presently known crucifer tobamovirus into two viruses with two strains each. A name change of Chinese rape mosaic virus to oilseed rape mosaic virus is proposed.Abbreviations 2-ME 2-mercaptoethanol - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - UTR untranslated region - MP movement protein - CP capsid protein - CRMV Chinese rape mosaic virus - TVCV turnip vein clearing virus - PaMMV paprika mild mottle virus - PMMV-I pepper mild mottle virus (Italian isolate) - PMMV-S pepper mild mottle virus (Spanish isolate) - ToMV tomato mosaic virus - TMV tobacco mosaic virus - TMGMV tobacco mild green mosaic virus - ORSV odontoglossum ringspot virus - SHMV sunn hemp mosaic virus - CGMMV cucumber green mottle mosaic virus - ORMV oilseed rape mosaic virus  相似文献   

13.
Our objectives were to evaluate elution and bait plant methods to detect infectious tobamoviruses in forest soils in New York State. Soils were collected from two forest sites: Whiteface Mountain (WF) and Heiberg Forest (HF). The effectiveness of four buffers to elute tomato mosaic tobamovirus (ToMV) from organic and mineral fractions of WF soil amended with ToMV was tested, and virus content was assessed by enzyme-linked immunosorbent assay (ELISA). The effectiveness of Chenopodium quinoa (Willd.) bait plants to detect the virus also was tested. Both methods then were utilized to detect tobamoviruses in 11 WF and 2 HF soil samples. A phosphate buffer (100 mM, pH 7.0) eluted more ToMV from soil than the other buffers tested. Mineral soil bound more virus than organic soil. Virus recoveries from virus-amended organic and mineral soils were 3 and 10%, respectively, and the detection sensitivity was 10 to 20 ng/g of soil. Roots of bait plants grown in all virus-amended soils tested positive by ELISA, and virus concentrations averaged 10 ng/g. Both ToMV and tobacco mosaic tobamovirus (TMV) were transmitted to C. quinoa by elution from one of two HF soil samples but not from the WF soil samples. A tobamovirus was detected by bait planting in 12 of 73 (16%) root extracts representing 5 of 13 soil samples (38%). Tobamovirus-like particles were seen by transmission electron microscopy in 6 of 12 infected root extracts. Tobamoviruses occur in forest soils in New York State. Abiotic soil transmission to trees may permit localized spread and persistence of these viruses in forest ecosystems.  相似文献   

14.
Small-angle scattering from macromolecules in solution is widely used to study their structures, but the information content is limited because the molecules are generally randomly oriented and hence the data are spherically averaged. The use of oriented rodlike structures for scattering, as in fiber diffraction, greatly increases the amount of structural detail that can be obtained. A new technique using a ferromagnetic fluid has been developed to align elongated structures independent of their intrinsic magnetic properties. This technique is ideal for small-angle neutron scattering because the scattering from the ferrofluid particles can be reduced significantly by matching the neutron scattering length density of the particles to a D2O solvent (“contrast matching”). The net result is scattering primarily from the ordered biological assembly in a solution environment that can be adjusted to physiological pH and ionic strength. Scattering results from ordered tobacco mosaic virus, tobacco rattle virus, and chromain fibers are presented.  相似文献   

15.
ABSTRACT. The ultrastructure of the cortex beneath the fission furrow of dividing Stentor coeruleus was examined using scanning and transmission electron microscopy. During division, basal bodies, axonemes, and km fibers beneath the furrow were absorbed near the moving primordial oral apparatus, and a circumferential band of microtubules and filaments was formed at the base of the furrow. The location and orientation of this fibrous band suggest that it may be an important component of the cytokinetic machinery. Treatment with vinblastine sulfate (4 × 10-5 M) disrupted the circumferential microtubules and blocked division, which is consistent with this hypothesis.  相似文献   

16.
Previous studies (Holmes, K.V., and P.W. Choppin. J. Exp. Med. 124:501- 520; J. Cell Biol. 39:526-543) showed that infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes extensive cell fusion, that nuclei migrate in the syncytial cytoplasm and align in tightly-packed rows, and that microtubules are involved in nuclear movement and alignment. The role of microtubules, 10-nm filaments, and actin-containing microfilaments in this process has been investigated by immunofluorescence microscopy using specific antisera, time-lapse cinematography, and electron microscopy. During cell fusion, micro tubules and 10-nm filaments from many cells form large bundles which are localized between rows of nuclei. No organized bundles of actin fibers were detected in these areas, although actin fibers were observed in regions away from the aligned nuclei. Although colchicine disrupts microtubules and inhibits nuclear movement, cytochalasin B (CB; 20-50 microgram/ml) does not inhibit cell fusion or nuclear movement. However, CB alters the shape of the syncytium, resulting in long filamentous processes extending from a central region. When these processes from neighboring cells make contact, fusion occurs, and nuclei migrate through the channels which are formed. Electron and immunofluorescence microscopy reveal bundles of microtubules and 10-nm filaments in parallel arrays within these processes, but no bundles of microfilaments were detected. The effect of CB on the structural integrity of microfilaments at this high concentration (20 microgram/ml) was demonstrated by the disappearance of filaments interacting with heavy meromyosin. Cycloheximide (20 microgram/ml) inhibits protein synthesis but does not affect cell fusion, the formation of microtubules and 10-nm filament bundles, or nuclear migration and alignment; thus, continued protein synthesis is not required. The association of microtubules and 10-nm filaments with nuclear migration and alignment suggests that microtubules and 10-nm filaments are two components in a system which serves both cytoskeletal and force-generating functions in intracellular movement and position of nuclei.  相似文献   

17.
Microtubules are structural components of the cytoskeleton that determine cell shape, polarity, and motility in cooperation with the actin filaments. In order to determine the role of microtubules in cell alignment, human airway smooth muscle cells were exposed to cyclic uniaxial stretch. Human airway smooth muscle cells, cultured on type I collagen-coated elastic silicone membranes, were stretched uniaxially (20% in strain, 30 cycles/min) for 2 h. The population of airway smooth muscle cells which were originally oriented randomly aligned near perpendicular to the stretch axis in a time-dependent manner. However, when the cells treated with microtubule disruptors, nocodazole and colchicine, were subjected to the same cyclic uniaxial stretch, the cells failed to align. Lack of alignment was also observed for airway smooth muscle cells treated with a microtubule stabilizer, paclitaxel. To understand the intracellular mechanisms involved, we developed a computational model in which microtubule polymerization and attachment to focal adhesions were regulated by the preexisting tensile stress, pre-stress, on actin stress fibers. We demonstrate that microtubules play a central role in cell re-orientation when cells experience cyclic uniaxial stretching. Our findings further suggest that cell alignment and cytoskeletal reorganization in response to cyclic stretch results from the ability of the microtubule-stress fiber assembly to maintain a homeostatic strain on the stress fiber at focal adhesions. The mechanism of stretch-induced alignment we uncovered is likely involved in various airway functions as well as in the pathophysiology of airway remodeling in asthma.  相似文献   

18.
The orientational behavior of microtubules assembled in strong magnetic fields has been studied. It is shown that when microtubules are assembled in a magnetic field, they align with their long axis parallel to the magnetic field. The effect of several parameters known to affect the microtubule assembly are investigated with respect to their effect on the final degree of alignment. Aligned samples of hydrated microtubules suitable for low-resolution x-ray fiber diffraction experiments have been produced, and the results obtained from the fiber diffraction experiments have been compared with the magnetic birefringence experiments. Comparisons with earlier fiber diffraction work and small-angle x-ray solution scattering experiments have been made.  相似文献   

19.
20.
Revealing high-resolution structures of microtubule-associated proteins (MAPs) is critical for understanding their fundamental roles in various cellular activities, such as cell motility and intracellular cargo transport. Nevertheless, large flexible molecular motors that dynamically bind and release microtubule networks are challenging for cryo-electron microscopy (cryo-EM). Traditional structure determination of MAPs bound to microtubules needs alignment information from the reconstruction of microtubules, which cannot be readily applied to large MAPs without a fixed binding pattern. Here, we developed a comprehensive approach to estimate the microtubule networks (multi-curve fitting), model the tubulin-lattice signals, and remove them (tubulin-lattice subtraction) from the raw cryo-EM micrographs. The approach does not require an ordered binding pattern of MAPs on microtubules, nor does it need a reconstruction of the microtubules. We demonstrated the capability of our approach using the reconstituted outer-arm dynein (OAD) bound to microtubule doublets. The tubulin-lattice subtraction improves the OAD alignment, thus leading to high-resolution reconstructions. In addition, the multi-curve fitting approach provides an accurate automatic alternative method to pick or segment filaments in 2D images and potentially in 3D tomograms. The accuracy of our approach has been demonstrated by using several other biological filaments. Our work provides a new tool to determine high-resolution structures of large MAPs bound to curved microtubule networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号