首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase delta: a second eukaryotic DNA replicase   总被引:2,自引:0,他引:2  
During the past few years significant progress has been made in our understanding of the structure and function of the proteins involved in eukaryotic DNA replication. Data from several laboratories suggest that, in contrast to prokaryotic DNA replication, two distinct DNA polymerases are required for eukaryotic DNA replication, i.e. DNA polymerase delta for the synthesis of the leading strand and DNA polymerase alpha for the lagging strand. Several accessory proteins analogous to prokaryotic replication factors have been identified and some of these are specific for pol delta whereas others affect both DNA replicases. The replicases and their accessory proteins appear to be highly conserved in eukaryotes, as homologous proteins have been found in species ranging from humans to yeast.  相似文献   

2.
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.  相似文献   

3.
Studies of the DNA polymerase III holoenzyme of Escherichia coli support a model in which both the leading and lagging strand polymerases are held together in a complex with the replicative helicase and priming activities, allowing two identical alpha catalytic subunits to assume different functions on the two strands of the replication fork. Creation of distinct functions for each of the two polymerases within the holoenzyme depends on the asymmetric character of the entire complex. The asymmetry of the holoenzyme is created by the DnaX complex, a heptamer that includes tau and gamma products of the dnaX gene. tau and gamma perform unique functions in the DnaX complex, and the interaction between alpha and tau appears to dictate the catalytic subunit's role in the replicative reaction. This review considers the properties of the DnaX complex including both tau and gamma, with the goal of understanding the properties of the replicase and its function in vivo. Recent studies in eukaryotic and other prokaryotic systems suggest that an asymmetric dimeric replicase may be universal. The leading and lagging strand polymerases may be distinct in some systems. For example, Pol e and Pol delta may function as distinct leading and lagging strand polymerases in eukaryotes, and PolC and DnaE may function as distinct leading and lagging strand polymerases in low GC content Gram-positive bacteria.  相似文献   

4.
Polymerase dynamics at the eukaryotic DNA replication fork   总被引:2,自引:0,他引:2  
This review discusses recent insights in the roles of DNA polymerases (Pol) delta and epsilon in eukaryotic DNA replication. A growing body of evidence specifies Pol epsilon as the leading strand DNA polymerase and Pol delta as the lagging strand polymerase during undisturbed DNA replication. New evidence supporting this model comes from the use of polymerase mutants that show an asymmetric mutator phenotype for certain mispairs, allowing an unambiguous strand assignment for these enzymes. On the lagging strand, Pol delta corrects errors made by Pol alpha during Okazaki fragment initiation. During Okazaki fragment maturation, the extent of strand displacement synthesis by Pol delta determines whether maturation proceeds by the short or long flap processing pathway. In the more common short flap pathway, Pol delta coordinates with the flap endonuclease FEN1 to degrade initiator RNA, whereas in the long flap pathway, RNA removal is initiated by the Dna2 nuclease/helicase.  相似文献   

5.
Agents discriminating between DNA polymerase alpha and DNA polymerases of class delta (polymerase delta or epsilon) were used to characterize steps in the synthesis of the lagging DNA strand of simian virus 40 during DNA replication in isolated nuclei. The synthesis of lagging-strand intermediates below 40 nucleotides, termed DNA primers (T. Nethanel, S. Reisfeld, G. Dinter-Gottlieb, and G. Kaufmann, J. Virol. 62:2867-2873, 1988), was selectively inhibited by butylphenyl dGTP or by neutralizing DNA polymerase alpha monoclonal antibodies. The synthesis of longer lagging chains of up to 250 nucleotides (Okazaki pieces) was affected to a lesser extent, possibly indirectly, by these agents. Aphidicolin, which inhibits both alpha- and delta-class enzymes, elicited the opposite pattern: DNA primers accumulated in its presence and were not converted into Okazaki pieces. These and previous data suggest that DNA polymerase alpha primase synthesizes DNA primers, whereas another DNA polymerase, presumably DNA polymerase delta or epsilon, mediates the conversion of DNA primers into Okazaki pieces.  相似文献   

6.
Replication factors A and C (RF-A and RF-C) and the proliferating cell nuclear antigen (PCNA) differentially augment the activities of DNA polymerases alpha and delta. The mechanism of stimulation by these replication factors was investigated using a limiting concentration of primed, single-stranded template DNA. RF-A stimulated polymerase alpha activity in a concentration-dependent manner, but also suppressed nonspecific initiation of DNA synthesis by both polymerases alpha and delta. The primer recognition complex, RF-C.PCNA.ATP, stimulated pol delta activity in cooperation with RF-A, but also functioned to prevent abnormal initiation of DNA synthesis by polymerase alpha. Reconstitution of DNA replication with purified factors and a plasmid containing the SV40 origin sequences directly demonstrated DNA polymerase alpha dependent synthesis of lagging strands and DNA polymerase delta/PCNA/RF-C dependent synthesis of leading strands. RF-A and the primer recognition complex both affected the relative levels of leading and lagging strands. These results, in addition to results in an accompanying paper (Tsurimoto, T., and Stillman, B. (1991) J. Biol. Chem. 266, 1950-1960), suggest that an exchange of DNA polymerase complexes occurs during initiation of bidirectional DNA replication at the SV40 origin.  相似文献   

7.
DNA replication is one of the most important events in living cells, and it is still a key problem how the DNA replication machinery works in its details. A replication fork has to be a very dynamic apparatus since frequent DNA polymerase switches from the initiating DNA polymerase alpha to the processive elongating DNA polymerase delta occur at the leading strand (about 8 x 10(4) fold on both strands in one replication round) as well as at the lagging strand (about 2 x 10(7) fold on both strands in one replication round) in mammalian cells. Lagging strand replication involves a very complex set of interacting proteins that are able to frequently initiate, elongate and process Okazaki fragments of 180 bp. Moreover, key proteins of this important process appear to be controlled by S-phase check-point proteins. It became furthermore clear in the last few years that DNA replication cannot be considered uncoupled from DNA repair, another very important event for any living organism. The reconstitution of nucleotide excision repair and base excision repair in vitro with purified components clearly showed that the DNA synthesis machinery of both of these macromolecular events are similar and do share many components of the lagging strand DNA synthesis machinery. In this minireview we summarize our current knowledge of the components involved in the execution and regulation of DNA replication at the lagging strand of the replication fork.  相似文献   

8.
Although polymerases delta and epsilon are required for DNA replication in eukaryotic cells, whether each polymerase functions on a separate template strand remains an open question. To begin examining the relative intracellular roles of the two polymerases, we used a plasmid-borne yeast tRNA gene and yeast strains that are mutators due to the elimination of proofreading by DNA polymerases delta or epsilon. Inversion of the tRNA gene to change the sequence of the leading and lagging strand templates altered the specificities of both mutator polymerases, but in opposite directions. That is, the specificity of the polymerase delta mutator with the tRNA gene in one orientation bore similarities to the specificity of the polymerase epsilon mutator with the tRNA gene in the other orientation, and vice versa. We also obtained results consistent with gene orientation having a minor influence on mismatch correction of replication errors occurring in a wild-type strain. However, the data suggest that neither this effect nor differential replication fidelity was responsible for the mutational specificity changes observed in the proofreading-deficient mutants upon gene inversion. Collectively, the data argue that polymerases delta and epsilon each encounter a different template sequence upon inversion of the tRNA gene, and so replicate opposite strands at the plasmid DNA replication fork.  相似文献   

9.
The current model of eukaryotic DNA replication involves the two DNA polymerases delta and alpha as the leading and lagging strand enzymes, respectively. A DNA polymerase first discovered in yeast has now been found in all eukaryotic cells and is termed DNA polymerase epsilon. In yeast, the gene for DNA polymerase epsilon has recently been found to be essential for viability, raising new questions about its functions.  相似文献   

10.
The interactions of azidothymidine triphosphate, the metabolically active form of the anti-AIDS drug azidothymidine (zidovudine), with the cellular DNA polymerases alpha, delta, and epsilon, as well as with the RNA primer-forming enzyme DNA primase were studied in vitro. DNA polymerase alpha was shown to incorporate azidothymidine monophosphate into a growing polynucleotide chain. This occurred 2000-fold slower than the incorporation of natural dTTP. Despite the ability of polymerase alpha to use azidothymidine triphosphate as an alternate substrate, this compound was only marginally inhibitory to the enzyme (Ki greater than 1 mM). Furthermore, the DNA primase activity associated with DNA polymerase alpha was barely inhibited by azidothymidine triphosphate (Ki greater than 1 mM). Inhibition was more pronounced for DNA polymerases delta and epsilon. The type of inhibition was competitive with respect to dTTP, with Ki values of 250 and 320 microM, respectively. No incorporation of azidothymidine monophosphate was detectable with these two DNA polymerases because their associated 3'- to 5'-exonuclease activities degraded primer molecules prior to any measurable elongation. Template-primer systems with a preformed 3'-azidothymidine-containing primer terminus inhibited the three replicative polymerases rather potently. DNA polymerase alpha was inhibited with a Ki of 150 nM and polymerases delta and epsilon with Ki values of 25 and 20 nM, respectively. The type of inhibition was competitive with respect to the unmodified substrate poly(dA).oligo(dT) for all DNA polymerases tested. Performed 3'-azidothymidine-containing primers hybridized to poly(dA) were rather resistant to degradation by the 3'- to 5'-exonuclease of DNA polymerases epsilon and more susceptible to the analogous activity that copurified with DNA polymerase delta. It is proposed that the repair of 3'-azidothymidine-containing primers might become rate-limiting for the process of DNA replication in cells that have been treated with azidothymidine triphosphate.  相似文献   

11.
Characterization of a triple DNA polymerase replisome   总被引:1,自引:0,他引:1  
The replicase of all cells is thought to utilize two DNA polymerases for coordinated synthesis of leading and lagging strands. The DNA polymerases are held to DNA by circular sliding clamps. We demonstrate here that the E. coli DNA polymerase III holoenzyme assembles into a particle that contains three DNA polymerases. The three polymerases appear capable of simultaneous activity. Furthermore, the trimeric replicase is fully functional at a replication fork with helicase, primase, and sliding clamps; it produces slightly shorter Okazaki fragments than replisomes containing two DNA polymerases. We propose that two polymerases can function on the lagging strand and that the third DNA polymerase can act as a reserve enzyme to overcome certain types of obstacles to the replication fork.  相似文献   

12.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

13.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

14.
The activity ratio of DNA polymerases delta and alpha in calf thymus was found to be invariably 1:1, irrespective of extraction procedure (8 types) and subcellular localization (cytoplasm, nucleus and microsomes). This was established by separation of the two forms by hydroxyapatite chromatography and by their response to specific inhibitors and monoclonal antibodies. This finding supports the dimeric DNA polymerase model [(1980) J. Biol. Chem. 255, 4290-4303], which proposes that DNA polymerases delta and alpha act coordinately as leading and lagging strand enzymes, respectively, at the replication fork.  相似文献   

15.
Complete enzymatic synthesis of DNA containing the SV40 origin of replication   总被引:62,自引:0,他引:62  
The replication of simian virus 40 origin-containing DNA has been reconstituted in vitro with SV40 large T antigen and purified proteins isolated from HeLa cells. Covalently closed circular DNA (RF I') daughter molecules are formed in the presence of T antigen, a single-stranded DNA binding protein and DNA polymerase alpha-primase complex, together with ribonuclease H, DNA ligase, topoisomerase II, and a double-stranded specific exonuclease that has been purified to homogeneity. The 44-kDa exonuclease-digested oligo(rA) annealed to poly(dT) in the 5'----3' direction. DNA ligase and the 5'----3' exonuclease were essential for RF I' formation. Covalently closed circular duplex DNA and full length linear single-stranded DNA were detected by alkaline gel electrophoresis as products of the complete system. DNA replication in the absence of either DNA ligase or the 5'----3' exonuclease yielded DNA products that were half length (approximately 1500 nucleotides) and smaller Okazaki-like fragments (approximately 200 nucleotides). Hybridization experiments showed that the longer chains were synthesized from the leading strand template, while the small products were synthesized from the lagging strand template. These results suggest that the RNA primers attached to 5' ends of replicated DNA are completely removed by the 5'----3' exonuclease, with the assistance of RNase H.  相似文献   

16.
F W Perrino  L A Loeb 《Biochemistry》1990,29(22):5226-5231
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.  相似文献   

17.
DNA replitase has been described as a complex of enzymes/proteins that are associated with both DNA precursor biosynthesis and DNA replication in mammalian cells [Reddy, G. P. V., and Pardee, A. B. (1980) Proc. Natl. Acad. Sci. USA 77, 3312-3316]. We demonstrate for the first time a 3'----5' exodeoxyribonuclease activity is associated with the replitase complex. As much as 60% of this exonuclease activity was similar to that associated with DNA polymerase delta based upon its sensitivity to inhibition by GMP and by butyl-phenyl-deoxyguanosine triphosphate (BuPdGTP). Association of 3'----5' exonuclease activity with the DNA polymerase in the replitase complex was also demonstrated by analyzing dTTP turnover to dTMP in an in vitro DNA polymerase assay system. The DNA polymerase activity in replitase complex exhibited a sensitivity to BuPdGTP which both was similar to that of DNA replication in permeable cells and was intermediate between the BuPdGTP inhibition of purified DNA polymerases alpha and delta. These studies suggest that the replitase complex contains 3'----5' exonuclease activity associated with the DNA polymerase activity responsible for nuclear DNA replication in mammalian cells. Further studies are required to determine if these activities are at least partially attributed to DNA polymerase delta.  相似文献   

18.
Holmes AM  Haber JE 《Cell》1999,96(3):415-424
Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.  相似文献   

19.
In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase delta (pol delta), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol delta is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol delta is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol delta observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a "collision release" process in which pol delta ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol delta transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol delta heterotrimer.  相似文献   

20.
"Editing" 3'----5' exonuclease activity of DNA polymerases corrects replication errors. This activity associated with procaryotic DNA polymerases is not intrinsic to purified mammalian DNA polymerases. By means of extraction and subsequent gel filtration, several subspecies of complexes of 3'----5' exonuclease (E.C. 3.1.4.26) with DNA polymerases alpha, beta (E.C. 2.7.7.7) and some other proteins were isolated from chromatin, nucleoplasm, nuclear membrane, and cytosol. Complexes containing 3'----5' exonuclease manifest from 40 to 70% of total DNA polymerase activity revealed in different compartments of a hepatocyte. Molecular masses of the complexes amount from 250 to 1500 kDa They dissociate as a result of solution hydrophobization. DNA polymerase alpha activity enhances 5--8 folds during cell transition from G0 to S-period. The value of the ratio of 3'----5' exonuclease activity of different complexes to their DNA polymerase activity varies from 0.5 to 12. Other cases of discovery of the complexes of DNA polymerases with 3'----5' exonucleases are discussed. It is suggested that the absence of 3'----5' exonuclease active site in the DNA polymerase polypeptide is compensated by the complex formation of the corresponding enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号