首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
DNA Repair in Potorous tridactylus   总被引:4,自引:0,他引:4       下载免费PDF全文
The DNA synthesized shortly after ultraviolet (UV) irradiation of Potorous tridactylis (PtK) cells sediments more slowly in alkali than that made by nonirradiated cells. The size of the single-strand segments is approximately equal to the average distance between 1 or 2 cyclobutyl pyrimidine dimers in the parental DNA. These data support the notion that dimers are the photoproducts which interrupt normal DNA replication. Upon incubation of irradiated cells the small segments are enlarged to form high molecular weight DNA as in nonirradiated cells. DNA synthesized at long times (~ 24 h) after irradiation is made in segments approximately equal to those synthesized by nonirradiated cells, although only 10-15% of the dimers have been removed by excision repair. These data imply that dimers are not the lesions which initially interrupt normal DNA replication in irradiated cells. In an attempt to resolve these conflicting interpretations, PtK cells were exposed to photoreactivating light after irradiation and before pulse-labeling, since photoreactivation repair is specific for only one type of UV lesion. After 1 h of exposure ~ 35% of the pyrimidine dimers have been monomerized, and the reduction in the percentage of dimers correlates with an increased size for the DNA synthesized by irradiated cells. Therefore, we conclude that the dimers are the lesions which initially interrupt DNA replication in irradiated PtK cells. The monomerization of pyrimidine dimers correlates with a disappearance of repair endonuclease-sensitive sites, as measured in vivo immediately after 1 h of photoreactivation, indicating that some of the sites sensitive to the repair endonuclease (from Micrococcus luteus) are pyrimidine dimers. However, at 24 h after irradiation and 1 h of photoreactivation there are no endonuclease-sensitive sites, even though ~ 50% of the pyrimidine dimers remain in the DNA. These data indicate that not all pyrimidine dimers are accessible to the repair endonuclease. The observation that at long times after irradiation DNA is made in segments equal to those synthesized by nonirradiated cells although only a small percentage of the dimers have been removed suggests that an additional repair system alters dimers so that they no longer interrupt DNA replication.  相似文献   

2.
Effect of Caffeine on Postreplication Repair in Human Cells   总被引:2,自引:0,他引:2       下载免费PDF全文
DNA synthesized shortly after ultraviolet (UV) irradiation of human cells is made in segments that are smaller than normal, but at long times after irradiation the segments made are normal in size. Upon incubation, both the shorter and the normal segments are elongated and joined by the insertion of exogenous nucleotides to form high molecular weight DNA as in nonirradiated cells. These processes occur in normal human cells, where UV-induced pyrimidine dimers are excised, as well as in xeroderma pigmentosum (XP) cells, where dimers are not excised. The effect of caffeine on these processes was determined for both normal human and XP cells. Caffeine, which binds to denatured regions of DNA, inhibited DNA chain elongation and joining in irradiated XP cells but not in irradiated normal human or nonirradiated cells. Caffeine also caused an alteration in the ability to recover synthesis of DNA of normal size at long times after irradiation in XP cells but not in normal cells.  相似文献   

3.
DNA synthesized in human cells after ultraviolet (UV) irradiation is made in segments of lower molecular weight than in unirradiated cells. Within several hours after irradiation these smaller units are both elongated and joined together. This repair process has been observed in normal human fibroblasts, HeLa cells, and fibroblasts derived from three types of xeroderma pigmentosum patients—uncomplicated with respect to neurological problems, complicated (de Sanctis-Cacchione syndrome), and one with the clinical symptoms of xeroderma pigmentosum but with normal repair replication. The ability of human cells to elongate and to join DNA strands despite the presence of pyrimidine dimers enables them to divide without excising the dimers present in their DNA. It may be this mechanism which enables xeroderma pigmentosum cells to tolerate small doses of UV radiation.  相似文献   

4.
Portions of the human genome that have replicated after ultraviolet light irradiation and those that remain unreplicated have both been examined for the distribution of pyrimidine dimers and the extent of repair replication following their removal. The data indicate that the number of unrepaired dimers and the extent of repair replication seen after their excision are equal in the replicated and unreplicated DNA. Furthermore, the daughter strand of replicated DNA is larger than the average interdimer distance found in the parental strand. Hence, DNA replication in normal human fibroblasts is clearly capable of getting past pyrimidine dimers, and a preferential repair of such lesions in DNA that is about to be or has been replicated does not operate to any visible extent in these cells.  相似文献   

5.
The relationship between pyrimidine dimers (measured as endonuclease-sensitive sites) and newly-synthesized DNA has been examined in several different ways, with the following results:- 1. After UV-irradiation of normal human fibroblasts the frequency of pyrimidine dimer sites in sections of DNA which have been synthesized immediately before the UV-irradiation is similar to that in the bulk DNA. 2. The frequency of pyrimidine dimer sites in the parental strands of replicating DNA in UV-irradiated normal human fibroblasts is similar to that in the bulk DNA. 3. In UV-irradiated XP variant cells the size of DNA synthesized in the presence of caffeine immediately after UV irradiation accurately corresponds with the average interdimer distance in the parental DNA. This suggests that in this experimental situation each pyrimidine dimer gives rise to a disocntinuity or a termination site in the daughter strand.  相似文献   

6.
The nature of DNA replication in UV irradiated Syrian hamster embryo cells (HEC) was investigated by measuring the size distribution of nascent daughter strand DNA. During the early mode nascent strands are made in smaller pieces than in nonirradiated cells. The late mode begins when nascent strands recover to normal size. This was observed in HEC 5 h post-UV. When the late mode is operational, nascent strands elongate to parental size in greater than 2 h, whereas less than 3 h are required during early mode function. Evidence from split dose experiments demonstrates that the recovery of the size of nascent strands is not due to enhanced gap filling. Furthermore, pyrimidine dimers are probably recognized differently by the replication complex during early and late mode DNA synthesis. The late mode of replication could account for the ability of HEC to survive UV irradiation even though they are inefficient in both excision and postreplication repair.  相似文献   

7.
L S Barenfel'd 《Tsitologiia》1984,26(3):343-348
By means of ultracentrifugation in alkaline sucrose gradients it has been shown that the size of DNA fragments synthesized in Chinese hamster cells of UV-sensitive clone (CHS-1) after exposure to UV light was equal to the distance between pyrimidine dimers in the parental DNA determined using endonuclease of Micrococcus luteus. With the UV-resistant clone (V-79), the length of fragments of the newly synthesized DNA was much longer than that between pyrimidine dimers in the parental DNA. The data obtained support the model according which DNA synthesis on the UV-irradiated template gives rise to gaps opposite to pyrimidine dimers.  相似文献   

8.
Since pyrimidine dimers are considered to be the cause of the synthesis of short DNA segments, normalization of DNA replication after UV irradiation should be in a temporal correlation with their removal. This correlation holds in exponentially growing excision-proficientEscherichia coli cells. However, when these cells are preincubated and postincubated without amino acids, synthesis of short segments continues although dimers are efficiently excised.  相似文献   

9.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

10.
We have examined the ability of normal fibroblasts and of excision-deficient xeroderma pigmentosum (XP) and XP variant fibroblasts to perform postreplication DNA repair after increasing doses of either ultraviolet (UV) irradiation or mutagenic benzo(a)pyrene derivatives. XP cells defective in the excision of both UV-induced pyrimidine dimers and guanine adducts induced by treatment with the 7,8-diol-9,10-epoxides of benzo(a)pyrene were partially defective in their ability to synthesize high molecular weight DNA after the induction of both classes of DNA lesions. This defect was more marked in XP variant cells, despite their ability to remove by excision repair both pyrimidine dimers and the diol epoxide-induced lesions to the same degree as observed in normal cells. The benzo(a)pyrene 9,10-oxide had no effect in any of the 3 cell lines. The response of the excision and postreplication DNA repair mechanisms operating in human fibroblasts treated with benzo(a)pyrene 7,8-diol-9,10-epoxides, therefore, appears to resemble closely that seen after the induction of pyrimidine dimers by UV irradiation.  相似文献   

11.
Endonuclease V from E. coli infected with phage T4 was used to evaluate the frequency and the removal of pyrimidine dimers from DNA in cultured mammalian cells. Cellular membranes were made permeable to the enzyme by two cycles of rapid freezing and thawing. The number of endonuclease-sensitive sites in DNA was assayed by sedimentation in alkaline sucrose gradients upon which the cells were lysed directly. Comparison of the frequency of endonuclease-sensitive sites with the frequency of pyrimidine dimers determined by chromatographic analysis of hydrolysed DNA indicated that about 50% of the dimers in the permeabilized cells were substrates for T4 endonuclease V. This was confirmed by observation that when DNA treated with the enzyme in situ was purified, it contained the expected additional number of endonuclease-sensitive sites if again treated with the enzyme. The percentage of pyrimidine dimers recognized by T4 endonuclease V was enhanced to nearly 100% by exposing the permeabilized cells to 2 M NaCl before the enzyme was introduced. This method allowed the measurement of frequencies of endonuclease-sensitive sites after doses of UV irradiation at low as 0.5 J/m2. Loss of endonuclease sites from cellular DNA was observed during post-irradiation incubation of V79 Chinese hamster cells and several human cell strains. A comparison of the results obtained in human cells with or without the high-salt exposure before endonuclease treatment suggested that the dimers recognized under low-salt conditions may be removed slightly faster than those recognized only after high-salt exposure.  相似文献   

12.
Human diploid cells (WI38) were pre-labeled with 32Pi, exposed to ultraviolet irradiation and then pulse labeled with [3H]thymidine. The extracted DNA from these cells was subsequently treated with the T4-endonuclease V, an enzyme which specifically nicks DNA strands at positions adjacent to pyrimidine dimers. Sedimentation in alkaline sucrose gradients revealed that the DNA synthesized after irradiation, as well as that made before, contained endonuclease-sensitive sites. Our results suggest that pyrimidine dimers are transferred from parental to daughter DNA strands during post-irradiation incubation. Sedimentation in neutral sucrose gradients showed that the molecular weight of native DNA was not affected by the endonuclease treatment, suggesting that the gaps appearing in daughter strands after irradiation are not opposite dimers or that the enzyme cannot recognize dimers in the gap regions.  相似文献   

13.
14.
Inhibition of DNA replication by ultraviolet light.   总被引:12,自引:0,他引:12       下载免费PDF全文
DNA replication in ultraviolet-irradiated HeLa cells was studied by two different techniques: measurements of the kinetics of semiconservative DNA synthesis, and DNA fiber autoradiography. In examining the kinetics of semiconservative DNA synthesis, density label was used to avoid measuring the incorporation due to repair replication. The extent of inhibition varied with time. After doses of less than 10J/m2 the rate was initially depressed but later showed some recovery. After higher doses, a constant, low rate of synthesis was seen for at least the initial 6 h. An analysis of these data indicated that the inhibition of DNA synthesis could be explained by replication forks halting at pyrimidine dimers. DNA fiber autoradiography was used to further characterize replication after ultraviolet irradiation. The average length of labeled segments in irradiated cells increased in the time immediately after irradiation, and then leveled off. This is the predicted pattern if DNA synthesis in each replicon continued at its previous rate until a lesion is reached, and then halted. The frequency of lesions that block synthesis is approximately the same as the frequency of pyrimidine dimers.  相似文献   

15.
A sensitive, enzymatic assay has been developed for the detection of closely opposed cyclobutyl pyrimidine dimers induced in UV-irradiated human diploid fibroblasts. In this assay closely opposed dimers are detected as bifilar enzyme-sensitive sites. Single-strand incisions are made at the positions of individual pyrimidine dimers through the action of M. luteus pyrimidine dimer-DNA glycosylase. Incisions at closely opposed dimers, effectively expressed as double-strand breaks, are quantified from the resulting reduction in DNA double-strand molecular weight as determined by velocity sedimentation through neutral sucrose density gradients. The stability of the bacteriophage lambda cos site under our reaction conditions indicates that opposed incisions must be relatively close to be expressed as a double-strand break. The dose response for the induction of bifilar enzyme-sensitive sites in mammalian cells was found to be complex but can be approximated by a function that increases as the 1.2-1.4 power of UV dose. The frequency of bifilar enzyme-sensitive sites observed decreased during postirradiation incubation of excision-repair-proficient human diploid fibroblasts with less than 20% still detectable at 24 h after irradiation with 5 J/m2 (254 nm). By comparison, over 80% of the bifilar enzyme-sensitive sites induced in fibroblasts assigned to xeroderma pigmentosum complementation group A remained detectable 24 h after irradiation. The implications of these results for models addressing the induction and repair of closely opposed pyrimidine dimers are discussed.  相似文献   

16.
The ability of ICR 2A frog cells to repair DNA damage induced by ultraviolet irradiation was examined. These cells are capable of photoreactivation but are nearly totally deficient in excision repair. They have the ability to convert the small molecule weight DNA made after irradiation into large molecules but do not show an enhancement in this process when the UV dose is delivered in two separate exposures separated by a 3- or 24-h incubation. Total DNA synthesis is depressed and low molecular weight DNA continues to be synthesized during pulse-labeling as long as 48 h after irradiation. The effects of pyrimidine dimer removal through exposure of UV irradiated cells to photoreactivating light indicate that dimers act as the critical lesions blocking DNA synthesis.  相似文献   

17.
Summary The role of pyrimidine dimers in mutagenesis by ultraviolet light was examined by measuring the UV-induced reversion of six different bacteriophage M13 amber mutants for which the neighboring DNA sequences are known. The mutational response at amber (TAG) codons preceded by a guanine or adenine (where no pyrimidine dimer can be formed) were compared with those preceded by thymine or cytosine (where dimer formation is possible). Equivalent levels of UV-induced mutagenesis were observed at both kinds of sites. This observation demonstrates that there is no requirement for a pyrimidine dimer directly at the site of UV-induced mutation in this single-stranded DNA phage. UV irradiation of the phage was also performed in the presence of Ag+ ions, which specifically sensitize the DNA to dimer formation. The two methods of irradiation, when compared at equal survival levels (and presumably equal dimer frequencies), produced equivalent frequencies of reversion of the amber phage. We believe these results indicate that while the presence of pyrimidine dimers may be a prerequisite for UV mutagenesis, the actual mutagenic event can occur at a site some distance removed from a dimer.  相似文献   

18.
The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences (<1 J/m2, producing less than one pyrimidine dimer per replicon) rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates without noticeably affecting synthesis in multi-repliconsize intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher (>1 J/m2, producing more than one dimer per replicon) cytotoxic fluences inhibited DNA synthesis in operating replicons presumably because the elongation of nascent strands was blocked where pyrimidine dimers were present in template strands. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences. indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation than the repair-deficient strains despite their ability to remove pyrimidine dimers. This analysis suggests that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery.  相似文献   

19.
Pyrimidine Dimers in the DNA of Paramecium aurelia   总被引:1,自引:0,他引:1       下载免费PDF全文
The production and fate of thymine-containing pyrimidine dimers in Paramecium aurelia DNA was investigated in three experimental series: production of dimers by UV irradiation, fate of dimers in the dark, and “loss of photoreactivability of dimers.” It is shown that cyclobutyl dimers are made by UV irradiation of Paramecium DNA in vivo, that because of cytoplasmic absorption the number of dimers made in DNA irradiated in vivo is much lower than in DNA irradiated in vitro, that dimers are lost from animals incubated in the dark after irradiation, and that all the dimers that remain in the animals can be destroyed by photoreactivating illumination. Since mutation induction is photoreactivable, these and previous photoreactivation data suggest that pyrimidine dimers are important in mutation induction in P. aurelia.  相似文献   

20.
Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. We have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. These breaks, measured by alkaline sucrose sedimentation, increased linearly with the dose of UV light over the range tested (10-40 J/m2). The breaks cannot be photolytically induced 5 h after a UV dose of 20 J/m2 in normal cells; however, in xeroderma pigmentosum variant cells, the breaks are inducible for up to 24 h after UV irradiation. Xeroderma pigmentosum group A cells in the same 5-h period show an increase in the number of strand breaks seen with 313-nm light photolysis from about 2 to 4 breaks/10(9) dalton DNA. These breaks can then be induced for up to 24 h. These data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号