首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
cAMP directly facilitates Ca-induced exocytosis in bovine lactotrophs   总被引:6,自引:0,他引:6  
S K Sikdar  R Zorec  W T Mason 《FEBS letters》1990,273(1-2):150-154
We have used the whole cell patch clamp technique on single prolactin-secreting bovine lactotrophs to measure plasma membrane capacitance (Cm), an index of membrane surface area, under voltage-clamp during cytosol dialysis with Ca and cAMP. cAMP increased the magnitude and rate of Ca-induced exocytosis (Cm increase) without affecting membrane conductance; however, cAMP had no detectable effect on Cm when intracellular Ca was low. We thus report new evidence that cAMP can facilitate Ca-induced secretion in a synergistic fashion, by acting directly on the secretory apparatus, independently of membrane conductance activation.  相似文献   

2.
The patch-clamp technique has been used to measure changes in membrane capacitance (Cm) of bovine lactotrophs in order to monitor fluctuations in cell surface area associated with exo- and endocytosis. Cells were prepared by an enrichment procedure and cultured for up to 14 d before use. Under whole-cell recording, cell cytoplasm was dialyzed with various Ca2(+)-containing solutions. The resting Cm of 6.05 +/- 1.68 pF was found to correlate well with squared cell radius, suggesting a specific Cm of 0.8 microF/cm2. Discrete Cm steps of 2-10 fF were recorded, which most likely reflect single fusion and retrieval events of prolactin-containing granules (0.2-0.6 microns in diameter). High Ca2+ resulted in a Cm increase of 20-50% from the resting value, demonstrating a role for [Ca2+]i in stimulus-secretion coupling. Spontaneous Cm changes have also been recorded, which presumably reflect prolactin secretion supported by a tonic influx of Ca2+ through the membrane. This is supported by the following findings: addition of Co2+ diminished or reversed the spontaneous Cm changes and decreased resting [Ca2+]i; and membrane depolarization increased Cm, indicating the role of voltage-activated channels in stimulus-secretion coupling. As bovine lactotrophs have been found to be largely devoid of spontaneous electrical activity, a mechanism involving modulation of a tonic Ca2+ influx is proposed; this is shown to provide adequate control of basal and triggered secretion monitored by Cm.  相似文献   

3.
D E Knight  P F Baker 《FEBS letters》1985,189(2):345-349
Exposure of 'leaky' adrenal medullary cells to GTP-y-S inhibits Ca-dependent exocytosis in bovine cells, but stimulates exocytosis in chicken cells. The inhibitory action on bovine cells persists in the presence of TPA suggesting that in this tissue an inhibitory GTP-binding protein may modulate the action of protein kinase C on exocytosis.  相似文献   

4.
The time course of exocytosis of quanta of acetylcholine induced by 20 mM K+ was studied at the frog neuromuscular junction. Images of vesicle fusion on freeze-fracture replicas were mostly localized at the active zones in resting preparations fixed in 20 mM K+. Fusions appeared also outside the active zones in preparations fixed after 1 min exposure to 20 mM K+ and were evenly distributed over the presynaptic membrane after 5 min in 20 mM K+ (even though secretion was prevented by withdrawing Ca2+ until 30 s before fixation). The mean densities of vesicle fusions were comparable in all conditions, as were the total number of quanta released during the fixation period. This indicates that fusions outside active zones represent ectopic exocytosis, slowly activated by potassium. Partial inactivation of K(+)-induced quantal release (time and concentration-dependent) was observed electrophysiologically; this may be related to the observed decrease in density of vesicle fusions along the active zones, with time. Consistently, after 5 min in 15 mM K+ fusion density at the active zones remained high. It is concluded that active zone-associated and ectopic fusions are two exocytotic processes activated with differential time courses and concentration-dependence by K+.  相似文献   

5.
To identify guanine nucleotide binding proteins (G-proteins) in sea urchin eggs and to investigate their role in signal transduction at fertilization, we used cholera toxin (CTX) and pertussis toxin (PTX), which catalyze the specific ADP-ribosylation of G-proteins. Cell surface complex, consisting of plasma membranes and adhering cortical vesicles, was prepared from eggs of Lytechinus variegatus and incubated with 32P-labeled NAD in the presence of CTX or PTX. CTX catalyzed the ADP-ribosylation of a 47-kDa polypeptide, whereas PTX catalyzed the ADP-ribosylation of a 40-kDa polypeptide. Microinjection of approximately 30 micrograms/ml whole CTX or approximately 20 micrograms/ml CTX subunit A into intact eggs caused exocytosis of cortical vesicles. However, if the eggs were first injected with EGTA (0.6-1.4 mM), injection of CTX did not cause exocytosis. Eggs injected with 0.8-2.8 mM cAMP or 1.0-4.0 mM adenosine 3':5'-monophosphotioate cyclic Sp-isomer (cAMP-S), a hydrolysis-resistant analog of cAMP, did not undergo exocytosis. These results suggest that a CTX-sensitive G-protein is involved in regulating Ca2+ release and exocytosis of cortical vesicles in sea urchin eggs.  相似文献   

6.
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca2+-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca2+-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

7.
The thermal activation barrier of guanosine triphosphate dependent dissociation of the light-induced rhodopsin-G-protein complex has been determined using a spectroscopic technique (enhanced formation of metarhodopsin II). The dissociation rate has been measured in the range - 2 degrees C less than or equal to t less than or equal to 12 degrees C. The Arrhenius plot yields apparent activation energies: 166 +/- 10 kJmol-1 with 5'-guanylylimidodiphosphate (GMPPNP) and 175 +/- 15 kJmol-1 with GTP. The rhodopsin-G-protein dissociation rate is linearly related to the concentration of GMPPNP in the measurable range (less than or equal to 200 microM). The data show that, at low temperature (1 degree C), the rate limiting step of G-protein activation is the bimolecular reaction between the protein and the nucleotide. This also seems to hold true for more physiological conditions as suggested by extrapolation and comparison with nucleotide exchange rates in the literature. The high activation barrier of the nucleotide exchange reaction is explained in terms of rapid endothermic preequilibrium between an inactive and an exchanging state of the rhodopsin-G-protein complex.  相似文献   

8.
9.
Pituitary lactotrophs fire action potentials spontaneously and the associated voltage-gated calcium influx is sufficient to maintain high prolactin release. Here we studied the role of hyperpolarization-activated cation channels in pacemaking activity, calcium signaling, and prolactin secretion in these cells. A slowly developing and hyperpolarization-activated inward current was identified but only in a fraction of lactotrophs. The current was blocked by ZD7288, a relatively specific blocker of these channels. However, the pacemaking activity increased in ZD7288-treated cells independently of the presence of this current. This in turn facilitated voltage-gated calcium influx and transiently stimulated prolactin secretion. Sustained ZD7288 application in concentrations that are commonly used to block the hyperpolarization-activated cation channels inhibited hormone release at elevated intracellular calcium concentrations. Agonist and Bay K 8644-stimulated prolactin release was also inhibited by ZD7288, indicating that this compound attenuates the exocytotic pathway downstream of calcium influx.  相似文献   

10.
Differential segmental distribution of electrophysiologically distinct myocytes helps to explain the variability of the pulmonary arteries to vasoactive agents. We have studied whether Ca2+-dependent CI(CICa) and K+(KCa) channels are activated differentially in enzymatically dispersed conduit and resistance myocytes. We measured cytosolic [Ca2+] and the changes of membrane current and potential elicited by spontaneous or agonist-induced Ca2+oscillations. Conduit arteries contained a heterogeneous cell population with a variable mixture of KCaand CICaconductances. Resistance arteries contained a more homogeneous cell population with predominance of CICachannel activation. The relation between KCaand CICaconductances in a given conduit myocyte determines the size of the Vmchange in response to a rise of cytosolic [Ca2+]. Conduit myocytes tend to hyperpolarize towards the K+equilibrium potential ( − 90 m V). In resistance myocytes, release of Ca2+from stores activates CICachannels and brings Vmto a value close to the chloride equilibrium potential ( − 20 or − 30 m V) thus favouring opening of Ca2+channels and Ca2+influx. In resistance vessels CICachannels contribute to link agonist-induced Ca2+release from stores and membrane depolarization, thus permitting protracted vasoconstriction.  相似文献   

11.
Navarro J  Landau EM  Fahmy K 《Biopolymers》2002,67(3):167-177
The primary step in cellular signaling by G-protein-coupled receptors (GPCRs) is the interaction of the agonist-activated transmembrane receptor with an intracellular G-protein. Understanding the underlying molecular mechanisms requires the structural determination of receptor G-protein complexes that are not yet achieved. The crystal structure of the bovine photoreceptor rhodopsin, a prototypical GPCR, was solved recently and the structures of different states of engineered G-proteins were reported. Posttranslational hydrophobic modifications of G-proteins are in most cases removed for crystallization but play functional roles for interactions among G-protein subunits with receptors, as well as membranes. Bovine rhodopsin is reconstituted into lipidic cubic phases to assess their potential for crystallization of receptor G-protein complexes under conditions that may preserve the structural and functional roles of hydrophobic protein modifications. Three-dimensional bilayers of a bicontinuous lipidic cubic phase are successfully employed for crystallization of membrane and soluble proteins. UV-visible absorption and attenuated total reflection Fourier transform IR difference spectroscopy reveal that light activation of cubic phase reconstituted rhodopsin results in the generation of a metarhodopsin II-like state. Via diffusion along aqueous channels, transducin couples efficiently to this photoproduct as evidenced by the nucleotide-dependent increase of transducin fluorescence. Thus, rhodopsin transducin interactions do not crucially depend on the presence of sn1 and sn2 acyl chains, phospholipid head groups, or membrane planarity. Because lipidic cubic phases preserve the essential functional and structural properties of native rhodopsin and transducin, they appear suitable for the detergent-free crystallization of receptor G-protein complexes carrying a normal pattern of hydrophobic modifications.  相似文献   

12.
13.
Marengo FD 《Cell calcium》2005,38(2):87-99
The relationship between the localized Ca(2+) concentration and depolarization-induced exocytosis was studied in patch-clamped adrenal chromaffin cells using pulsed-laser Ca(2+) imaging and membrane capacitance measurements. Short depolarizing voltage steps induced Ca(2+) gradients and small "synchronous" increases in capacitance during the pulses. Longer pulses increased the capacitance changes, which saturated at 16 fF, suggesting the presence of a small immediately releasable pool of fusion-ready vesicles. A Hill plot of the capacitance changes versus the estimated Ca(2+) concentration in a thin (100 nm) shell beneath the membrane gave n = 2.3 and K(d) = 1.4 microM. Repetitive stimulation elicited a more complex pattern of exocytosis: early pulses induced synchronous capacitance increases, but after five or more pulses there was facilitation of the synchronous responses and gradual increases in capacitance continued between pulses (asynchronous exocytosis) as the steep submembrane Ca(2+) gradients collapsed. Raising the pipette Ca(2+) concentration led to early facilitation of the synchronous response and early appearance of asynchronous exocytosis. We used this data to develop a kinetic model of depolarization-induced exocytosis, where Ca(2+)-dependent fusion of vesicles occurs from a small immediately releasable pool with an affinity of 1-2 microM and vesicles are mobilized to this pool in a Ca(2+)-dependent manner.  相似文献   

14.
15.
The activation mechanism of class-C G-protein coupled receptors   总被引:4,自引:0,他引:4  
Class-C G-protein coupled receptors (GPCRs) represent a distant group among the large family of GPCRs. This class includes the receptors for the main neurotransmitters, glutamate and gamma-aminobutyric acid (GABA), and the receptors for Ca(2+), some taste and pheromone molecules, as well as some orphan receptors. Like any other GPCRs, class-C receptors possess a heptahelical domain (HD) involved in heterotrimeric G-protein activation, but most of them also have a large extracellular domain (ECD) responsible for agonist recognition and binding. In addition, it is now well accepted that these receptors are dimers, either homo or heterodimers. This complex architecture raises a number of important questions. Here we will discuss our view of how agonist binding within the large ECD triggers the necessary change of conformation, or stabilize a specific conformation, of the heptahelical domain leading to G-protein activation. How ligands acting within the heptahelical domain can change the properties of these complex macromolecules.  相似文献   

16.
Effects of Na+ and K+ on Ca2+ transport by sarcoplasmic reticulum vesicles were studied in a medium containing high Mg2+ and ATP (2mM) and low Ca2+ (0.44μM) concentrations. Under these conditions, Na+ and K+ inhibit Ca2+ uptake. ATPase activity and membrane phosphorylation by ATP. Since the concentrations of ATP and Ca2+ used are consistent with relaxation in vivo, the results suggest that under physiological resting conditions the Ca2+ pump of the sarcoplasmic reticulum operates below its maximal capacity.  相似文献   

17.
We have shown before that the duration and amplitude of both prolonged (1-160 s) and short (100-1000 ms) depolarizing prepulse altered all the steady-state and kinetic parameters of rNav1.2a voltage-gated sodium channel in a pseudo-oscillatory fashion with variable time period and amplitude, often superimposed on a linear trend. In this study, we have examined the effect of G-protein activation on pseudo-oscillatory properties of the rNav1.2a sodium channel alpha subunit, heterologously expressed in Chinese hamster ovary cells. G-protein modification caused insignificant changes in the slow pseudo-periodic oscillation of the activation properties of sodium channel; only the time period of the oscillation was altered from approximately 30 to 21s. In contrast, G-protein activation abolished the faster component of pseudo-periodic oscillation in steady-state inactivation properties of sodium channel; the conditioning duration dependence of steady-state inactivation becomes monotonic in nature.  相似文献   

18.
19.
Bioactive lysophospholipids (LPLs) are released by blood cells and can modulate many cellular activities such as angiogenesis and cell survival. In this study, the effects of sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) on excitability and exocytosis in bovine chromaffin cells were investigated using the whole-cell configuration of the patch-clamp. Voltage-gated Ca(2+) current was inhibited by S1P and LPA pre-treatment in a concentration-dependent manner with IC(50)s of 0.46 and 0.79 mumol/L, respectively. Inhibition was mostly reversible upon washout and prevented by suramin, an inhibitor of G-protein signaling. Na(+) current was inhibited by S1P, but not by LPA. However, recovery of Na(+) channels from inactivation was slowed by both LPLs. The outward K(+) current was also significantly reduced by both LPLs. Chromaffin cells fired repetitive action potentials in response to minimal injections of depolarizing current. Repetitive activity was dramatically reduced by LPLs. Consistent with the reduction in Ca(2+) current, exocytosis elicited by a train of depolarizations and the ensuing endocytosis were both inhibited by LPL pre-treatments. These data demonstrate the interaction between immune and endocrine systems mediated by the inhibitory effects of LPLs on the excitability of adrenal chromaffin cells.  相似文献   

20.
《Biochemical education》1998,26(1):77-81
This article describes part of a graduate course in Biochemistry which involves the practical study of metabolic regulation in eukaryotic cells. This comes after three months of lectures on this topic and in the laboratory practical students partially purify and characterise transducin from bovine retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号