首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the temporal and spatial profiles of neural precursor cells, hippocampal long-term potentiation (LTP), and signaling molecules in neurogenesis-induced adult rats. Chronic lithium treatment produced a significant 54% and 40% increase in the numbers of bromodeoxyuridine [BrdU(+)] cells after 12 h and 28 days, respectively, after treatment completion in the dentate gyrus (DG). Both LTP obtained from slices perfused with artificial cerebrospinal fluid (ACSF-LTP) and LTP recorded in the presence of bicuculline (bicuculline-LTP) were significantly greater in the lithium group than in the saline controls. Although the number of BrdU(+) cells, approximately 90% of which were double-labeled with a neural marker neuronal nuclear protein, were markedly increased in the granule cell layer (GCL) 28 days after the completion of the 28-day lithium treatment, the magnitude of LTP observed at this time was similar to that observed 12 h after completing the 28-day lithium treatment. However, protein levels of calcium and calmodulin-dependent protein kinase II, p-Elk and TrkB were highly elevated until 28 days after the 28-day lithium treatment. Acute lithium treatment for 2 days also enhanced LTP, which was accompanied by the elevated expression of p-CREB, but not by neurogenesis. Our results suggest that the enhancement of LTP is independent of the increased number of neurons per se and it is more closely associated with key molecules, which are probably involved in neurogenesis.  相似文献   

2.
Donepezil hydrochloride is a potent and selective acetylcholinesterase inhibitor and has been treated for Alzheimer's disease, in which the cholinergic dysfunction is observed. Recently, the degeneration of medial septal cholinergic nuclei in adult rat suppressed the neurogenesis in hippocampal dentate gyrus (DG) was reported. Then, we determined whether donepezil which activated the brain cholinergic system could modulate hippocampal neurogenesis in normal rats. After the injection of 5'-bromo-2'-deoxyuridine (BrdU) to label dividing cells, we orally treated with donepezil (0.5 or 2mg/kg) once a day for 4 weeks. In the other group, we performed 4-week subcutaneous infusion of scopolamine (0.75 or 3mg/day), a muscarinic acetylcholine receptor blocker. The doses of donepezil and scopolamine we used in this study were reported to activate and inhibit cholinergic activity in rats, respectively. One day after the completion of drug treatment, the animals were sacrificed, and immunohistochemical analysis was performed. Donepezil increased, but scopolamine decreased, the number of BrdU-positive cells in the DG as compared with the vehicle-treated control. Neither drug had any effects on the percentage of BrdU-positive cells that were also positive for a neuronal marker NeuN, nor the number of proliferating cell nuclear antigen-positive cells in the DG. These results indicate that donepezil enhances and scopolamine suppresses the survival of newborn neurons in the DG without affecting the proliferation of neural progenitor cell and the neuronal differentiation. We also found that chronic treatment of donepezil enhanced, and scopolamine suppressed phosphorylation of cAMP response element binding protein (CREB), which was involved in cell survival, in the DG. These results suggest that donepezil activates the central cholinergic transmission and enhances the survival of newborn neurons in the DG via CREB signaling.  相似文献   

3.
In the brain, specific signaling pathways localized in highly organized regions called niches allow the persistence of a pool of stem and progenitor cells that generate new neurons in adulthood. Much less is known about the spinal cord where a sustained adult neurogenesis is not observed. Moreover, there is scarce information concerning cell proliferation in the adult mammalian spinal cord and virtually none in aging animals or humans. We performed a comparative morphometric and immunofluorescence study of the entire cervical region (C1-C8) in young (5 mo.) and aged (30 mo.) female rats. Serum prolactin (PRL), a neurogenic hormone, was also measured. Gross anatomy showed a significant age-related increase in size of all of the cervical segments. Morphometric analysis of cresyl violet stained segments also showed a significant increase in the area occupied by the gray matter of some cervical segments of aged rats. The most interesting finding was that both the total area occupied by neurons and the number of neurons increased significantly with age, the latter increase ranging from 16% (C6) to 34% (C2). Taking the total number of cervical neurons the age-related increase ranged from 19% (C6) to 51% (C3), C3 being the segment that grew most in length in the aged animals. Some bromodeoxyuridine positive-neuron specific enolase negative (BrdU(+)-NSE(-)) cells were observed and, occasionally, double positive (BrdU(+)-NSE(+)) cells were detected in some cervical segments of both young and aged rats groups. As expected, serum PRL increased markedly with age. We propose that in the cervical spinal cord of female rats, both maturation of pre-existing neuroblasts and/or possible neurogenesis occur during the entire life span, in a process in which PRL may play a role.  相似文献   

4.
In the healthy adult brain, neurogenesis normally occurs in the subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Cerebral ischemia enhances neurogenesis in neurogenic and non-neurogenic regions of the ischemic brain of adult rodents. This study demonstrated that post-insult treatment with a histone deacetylase inhibitor, sodium butyrate (SB), stimulated the incorporation of bromo-2'-deoxyuridine (BrdU) in the SVZ, DG, striatum, and frontal cortex in the ischemic brain of rats subjected to permanent cerebral ischemia. SB treatment also increased the number of cells expressing polysialic acid–neural cell adhesion molecule, nestin, glial fibrillary acidic protein, phospho-cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) in various brain regions after cerebral ischemia. Furthermore, extensive co-localization of BrdU and polysialic acid–neural cell adhesion molecule was observed in multiple regions after ischemia, and SB treatment up-regulated protein levels of BDNF, phospho-CREB, and glial fibrillary acidic protein. Intraventricular injection of K252a, a tyrosine kinase B receptor antagonist, markedly reduced SB-induced cell proliferation detected by BrdU and Ki67 in the ipsilateral SVZ, DG, and other brain regions, blocked SB-induced nestin expression and CREB activation, and attenuated the long-lasting behavioral benefits of SB. Together, these results suggest that histone deacetylase inhibitor-induced cell proliferation, migration and differentiation require BDNF–tyrosine kinase B signaling and may contribute to long-term beneficial effects of SB after ischemic injury.  相似文献   

5.
Jin K  Minami M  Xie L  Sun Y  Mao XO  Wang Y  Simon RP  Greenberg DA 《Aging cell》2004,3(6):373-377
The adult mammalian brain retains the capacity for neurogenesis, by which new neurons may be generated to replace those lost through physiological or pathological processes. However, neurogenesis diminishes with aging, and this casts doubt on its feasibility as a therapeutic target for cell replacement therapy in stroke and neurodegenerative disorders, which disproportionately affect the aged brain. In previous studies, neurogenesis was stimulated by cerebral ischemia in young rodents, and the neurogenesis response of the aged rodent brain to physiological stimuli, such as hormonal manipulation and growth factors, was preserved. To investigate the effect of aging on ischemia-induced neurogenesis, transient (60 min) middle cerebral artery occlusion was induced in young adult (3-month) and aged (24-month) rats, who were also given bromodeoxyuridine to label newborn cells. As found in prior studies, basal neurogenesis in control, nonischemic rats was reduced with aging. Ischemia failed to stimulate neurogenesis in the dentate gyrus (DG) subgranular zone (SGZ), in contrast to results obtained previously after more prolonged (90-120 min) middle cerebral artery occlusion, but increased the number of BrdU-labeled cells in the forebrain subventricular zone (SVZ). This effect was less prominent in aged than in young adult rats, with fold-stimulation of BrdU incorporation reduced by approximately 20% and the total number of cells generated diminished by approximately 50%. BrdU-labeled cells in SVZ coexpressed neuronal lineage markers, consistent with newborn neurons. We conclude that ischemia-induced neurogenesis occurs in the aged brain, and that measures designed to augment this phenomenon might have therapeutic applications.  相似文献   

6.
While it is well known that production of new neurons from neural stem/progenitor cells (NSC) in the dentate gyrus (DG) diminishes greatly by middle age, the phases and mechanisms of major age-related decline in DG neurogenesis are largely unknown. To address these issues, we first assessed DG neurogenesis in multiple age groups of Fischer 344 rats via quantification of doublecortin-immunopositive (DCX+) neurons and then measured the production, neuronal differentiation and initial survival of new cells in the subgranular zone (SGZ) of 4-, 12- and 24-month-old rats using four injections (one every sixth hour) of 5'-bromodeoxyuridine (BrdU), and BrdU-DCX dual immunostaining. Furthermore, we quantified the numbers of proliferating cells in the SGZ of these rats using Ki67 immunostaining. Numbers of DCX+ neurons were stable at 4-7.5 months of age but decreased progressively at 7.5-9 months (41% decline), 9-10.5 months (39% decline), and 10.5-12 months (34% decline) of age. Analyses of BrdU(+) cells at 6 h after the last BrdU injection revealed a 71-78% decline in the production of new cells per day between 4-month-old rats and 12- or 24-month-old rats. Numbers of proliferating Ki67+ cells (putative NSCs) in the SGZ also exhibited similar (72-85%) decline during this period. However, the extent of both neuronal differentiation (75-81%) and initial 12-day survival (67-74%) of newly born cells was similar in all age groups. Additional analyses of dendritic growth of 12-day-old neurons revealed that newly born neurons in the aging DG exhibit diminished dendritic growth compared with their age-matched counterparts in the young DG. Thus, major decreases in DG neurogenesis occur at 7.5-12 months of age in Fischer 344 rats. Decreased production of new cells due to proliferation of far fewer NSCs in the SGZ mainly underlies this decline.  相似文献   

7.
Erythropoietin is a primary regulator of erythropoiesis in the hematopoietic system. More recently erythropoietin has been shown to play a role in neurogenesis and provide neurotrophic support to injured CNS tissue. Here the effects of large systemic doses of erythropoietin on basal levels of adult hippocampal neurogenesis in mice were examined. A 7-day period of recombinant human erythropoietin (rhEPO) administration increased the number of bromodeoxyuridine [BrdU(+)] cells in the sub-granular zone (SGZ) by 30%. Analysis of cell phenotype revealed an increase in mitotically active doublecortin(+) neuronal progenitor cells and glial fibrillary acidic protein(+) SGZ radial astrocytes/stem cells but not mature S100beta(+) astrocytes. These effects appeared to be mediated, in part, by mitogen-activated protein kinase signaling and potentially regulated by suppressor of cytokine signaling-3. Hippocampal levels of phosphorylated extracellular signal-related kinase 42/44 and suppressor of cytokine signaling-3 were increased 2-6 h after a single systemic rhEPO injection. However, rhEPO had no observed effect on the long-term survival of new born cells in the SGZ, with similar numbers of BrdU(+) cells and BrdU(+)/NeuN(+) co-labeled cells after 4 weeks. Therefore, systemically delivered rhEPO transiently increased adult hippocampal neurogenesis without any apparent long-term effects.  相似文献   

8.
为了探讨强制运动对成年大鼠海马齿状回(dentate gyrus,DG)神经发生的影响,强制大鼠在马达驱动的转轮中跑步,用5-溴-2-脱氧尿苷(5-bromo-2-deoxyuridine,BrdU)标记增殖细胞,巢蛋白(neuroepthelial stem cell protein,nestin)标记神经干细胞/前体细胞,然后用免疫细胞化学技术检测大鼠DG中BrdU及nestin阳性细胞。为了解强制运动后DG增殖细胞的功能意义,采用Y-迷宫检测大鼠的学习能力。结果表明,强制运动组DG中BrdU及nestin阳性细胞数均日月显多于对照组(P〈0.05):强制运动对DG神经发生的效应有强度依赖性。Y-迷宫检测结果显示,强制运动能明显改善大鼠的学习能力。结果提示,在转轮中进行强制跑步能促进成年火鼠DG的神经发生,并改善学习能力。  相似文献   

9.
Tight regulation of hormone and neurochemical milieu during developmental periods is critical for adequate physiological functions. For instance, activation of peptide systems during early life stress induces morphological changes in the brain resulting in depression and anxiety disorders. Prolactin (PRL) exerts different actions within the brain; it regulates neurogenesis and modulates neuroendocrine functions in the adult. However, PRL effects during early postnatal life are hardly known. Therefore, we examined whether neonatal administration of PRL influences cell survival in the hippocampal dentate gyrus (DG) and in the olfactory bulb (OB) and whether such influence results in behavioral consequences in adulthood. PRL-treated rat pups (13 mg/kg; PND1 to PND14), injected with BrdU at postnatal day 5 (PND5), showed a decrease in the density of DG BrdU/DCX and BrdU/NeuN-positive cells that survive at PND15. Similarly, PRL treatment decreased the density of BrdU + cells in the OB compared with VEH. Fluorojade B analysis showed no significant changes in the amount of cell death in the DG between the groups. Postnatal PRL administration induced a passive coping strategy in the forced swimming test in male and female adult rats when compared with control and vehicle groups. Corticosterone endogenous levels at PND12 were not affected by PRL or VEH treatment. Altogether, these results suggest that opposed to its effects in the adult, postnatal PRL treatment affects neurogenesis and results in psychopathology later in life. High PRL levels, as observed in neonates under several pathological states, might contribute to detrimental effects on the developing brain.  相似文献   

10.
《Hormones and behavior》2014,65(5):781-789
Tight regulation of hormone and neurochemical milieu during developmental periods is critical for adequate physiological functions. For instance, activation of peptide systems during early life stress induces morphological changes in the brain resulting in depression and anxiety disorders. Prolactin (PRL) exerts different actions within the brain; it regulates neurogenesis and modulates neuroendocrine functions in the adult. However, PRL effects during early postnatal life are hardly known. Therefore, we examined whether neonatal administration of PRL influences cell survival in the hippocampal dentate gyrus (DG) and in the olfactory bulb (OB) and whether such influence results in behavioral consequences in adulthood. PRL-treated rat pups (13 mg/kg; PND1 to PND14), injected with BrdU at postnatal day 5 (PND5), showed a decrease in the density of DG BrdU/DCX and BrdU/NeuN-positive cells that survive at PND15. Similarly, PRL treatment decreased the density of BrdU + cells in the OB compared with VEH. Fluorojade B analysis showed no significant changes in the amount of cell death in the DG between the groups. Postnatal PRL administration induced a passive coping strategy in the forced swimming test in male and female adult rats when compared with control and vehicle groups. Corticosterone endogenous levels at PND12 were not affected by PRL or VEH treatment. Altogether, these results suggest that opposed to its effects in the adult, postnatal PRL treatment affects neurogenesis and results in psychopathology later in life. High PRL levels, as observed in neonates under several pathological states, might contribute to detrimental effects on the developing brain.  相似文献   

11.
目的研究成年大鼠局灶性脑缺血后海马齿状回(DG)神经发生的情况及其与血管内皮生长因子(VEGF)的关系,探讨脑缺血后神经发生及其调控机制。方法通过大脑中动脉阻断法(MCAO)建立大鼠局灶性脑缺血模型,以5-溴-2-脱氧尿核苷(BrdU)标记增殖的神经前体细胞(NPCs),用免疫组化及免疫荧光双标记法动态检测脑缺血后不同时间DG神经细胞增殖及其分化,同时观察增殖细胞表达VEGF及其受体情况。结果与对照组相比,缺血侧DG的BrdU阳性细胞数在脑缺血后1d开始增加,7d达高峰,28d接近正常水平;BrdU/TuJ1、BrdU/MAP-2阳性双标细胞数在脑缺血后14d开始增加,28d达高峰;BrdU/GFAP阳性双标细胞数则无明显变化;增殖的BrdU阳性细胞同时表达VEGF及其受体FLK-1。结论大鼠局灶性脑缺血可激活DG自体NPCs原位增殖、分化,增殖的细胞同时表达VEGF及其受体可能是脑缺血后神经发生增强的调节机制之一。  相似文献   

12.
A remarkable up-regulation of neurogenesis through increased proliferation of neural stem/progenitor cells (NSCs) is a well-known plasticity displayed by the young dentate gyrus (DG) following brain injury. To ascertain whether this plasticity is preserved during aging, we quantified DG neurogenesis in the young adult, middle-aged and aged F344 rats after kainic acid induced hippocampal injury. Measurement of new cells that are added to the dentate granule cell layer (GCL) between post-injury days 4 and 15 using 5'-bromodeoxyuridine labeling revealed an increased addition of new cells in the young DG but not in the middle-aged and aged DG. Quantification of newly born neurons using doublecortin immunostaining also demonstrated a similar trend. Furthermore, the extent of ectopic migration of new neurons into the dentate hilus was dramatically increased in the young DG but was unaltered in the middle-aged and aged DG. However, there was no change in neuronal fate-choice decision of newly born cells following injury in all age groups. Similarly, comparable fractions of new cells that are added to the GCL after injury exhibited 5-month survival and expressed the mature neuronal marker NeuN, regardless of age or injury at the time of their birth. Thus, hippocampal injury does not adequately stimulate NSCs in the middle-aged and aged DG, resulting in no changes in neurogenesis after injury. Interestingly, rates of both neuronal fate-choice decision and long-term survival of newly born cells remain stable with injury in all age groups. These results underscore that the ability of the DG to increase neurogenesis after injury is lost as early as middle age.  相似文献   

13.
Numerous studies have demonstrated that traumatic brain injury (TBI) increases hippocampal neurogenesis in the rodent brain. However, the mechanisms underlying increased neurogenesis after TBI remain unknown. Continuous neurogenesis occurs in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) in the adult brain. The mechanism that maintains active neurogenesis in the hippocampal area is not known. A high level of vesicular zinc is localized in the presynaptic terminals of the SGZ (mossy fiber). The mossy fiber of dentate granular cells contains high levels of chelatable zinc in their terminal vesicles, which can be released into the extracellular space during neuronal activity. Previously, our lab presented findings indicating that a possible correlation may exist between synaptic zinc localization and high rates of neurogenesis in this area after hypoglycemia or epilepsy. Using a weight drop animal model to mimic human TBI, we tested our hypothesis that zinc plays a key role in modulating hippocampal neurogenesis after TBI. Thus, we injected a zinc chelator, clioquinol (CQ, 30 mg/kg), into the intraperitoneal space to reduce brain zinc availability twice per day for 1 week. Neuronal death was evaluated with Fluoro Jade-B and NeuN staining to determine whether CQ has neuroprotective effects after TBI. The number of degenerating neurons (FJB (+)) and live neurons (NeuN (+)) was similar in vehicle and in CQ-treated rats at 1 week after TBI. Neurogenesis was evaluated using BrdU, Ki67 and doublecortin (DCX) immunostaining 1 week after TBI. The number of BrdU, Ki67 and DCX positive cell was increased after TBI. However, the number of BrdU, Ki67 and DCX positive cells was significantly decreased by CQ treatment. The present study shows that zinc chelation did not prevent neurodegeneration but did reduce TBI-induced progenitor cell proliferation and neurogenesis. Therefore, this study suggests that zinc has an essential role for modulating hippocampal neurogenesis after TBI.  相似文献   

14.
Neurogenesis diminishes with aging and ischemia‐induced neurogenesis also occurs, but reduced in aged brain. Currently, the cellular and molecular pathways mediating these effects remain largely unknown. Our previous study has shown that Notch1 signaling regulates neurogenesis in subventricular zone (SVZ) of young adult brain after focal ischemia, but whether a similar effect occurs in aged normal and ischemic animals is unknown. Here, we used normal and ischemic aged rat brains to investigate whether Notch1 signaling was involved in the reduction of neurogenesis in response to aging and modulates neurogenesis in aged brains after focal ischemia. By Western blot, we found that Notch1 and Jagged1 expression in the SVZ of aged brain was significantly reduced compared with young adult brain. Consistently, the activated form of Notch1 (Notch intracellular domain; NICD) expression was also declined. Immunohistochemistry confirmed that expression and activation of Notch1 signaling in the SVZ of aged brain were reduced. Double or triple immunostaining showed that that Notch1 was mainly expressed in doublecortin (DCX)‐positive cells, whereas Jagged1 was predominantly expressed in astroglial cells in the SVZ of normal aged rat brain. In addition, disruption or activation of Notch1 signaling altered the number of proliferating cells labeled by bromodeoxyuridine (BrdU) and DCX in the SVZ of aged brain. Moreover, ischemia‐induced cell proliferation in the SVZ of aged brain was enhanced by activating the Notch1 pathway and was suppressed by inhibiting the Notch1 signaling. Reduced infarct volume and improved motor deficits were also observed in Notch1 activator–treated aged ischemic rats. Our data suggest that Notch1 signaling modulates the SVZ neurogenesis in aged brain in normal and ischemic conditions.  相似文献   

15.
The fetal and even the young brain possesses a considerable degree of plasticity. The plasticity and rate of neurogenesis in the adult brain is much less pronounced. The present study was conducted to investigate whether housing conditions affect neurogenesis, learning, and memory in adult rats. Three-month-old rats housed either in isolation or in an enriched environment were injected intraperitoneally with bromodeoxyuridine (BrdU) to detect proliferation among progenitor cells and to follow their fate in the dentate gyrus. The rats were sacrificed either 1 day or 4 weeks after BrdU injections. This experimental paradigm allows for discrimination between proliferative effects and survival effects on the newborn progenitors elicited by different housing conditions. The number of newborn cells in the dentate gyrus was not altered 1 day after BrdU injections. In contrast, the number of surviving progenitors 1 month after BrdU injections was markedly increased in animals housed in an enriched environment. The relative ratio of neurogenesis and gliogenesis was not affected by environmental conditions, as estimated by double-labeling immunofluorescence staining with antibodies against BrdU and either the neuronal marker calbindin D28k or the glial marker GFAp, resulting in a net increase in neurogenesis in animals housed in an enriched environment. Furthermore, we show that adult rats housed in an enriched environment show improved performance in a spatial learning test. The results suggest that environmental cues can enhance neurogenesis in the adult hippocampal region, which is associated with improved spatial memory.  相似文献   

16.
IGF-1对缺血性脑损伤大鼠脑内神经发生的影响   总被引:3,自引:0,他引:3  
目的:建立大鼠单侧局灶脑缺血模型,观察胰岛素样生长因子-1(IGF-1)对局灶脑缺血后的鼠脑神经发生及增殖后细胞生存的影响.方法:用健康雄性SD大鼠建立大脑中动脉阻塞(MCAO)模型,随机分成假手术组,缺血对照组和IGF-1治疗组.各组再按不同的治疗时间分为7d、14d、28d、42d组.免疫组化法观察BrdU、PSA-NCAM的变化,免疫双标法观察BrdU/PSA-NCAM、BrdU/MAP2和BrdU/GFAP的共同表达变化.结果:BrdU标记细胞和PSA-NCAM标记细胞计数均在缺血后第7d最多,分别是缺血对照组的4.0倍和1.8倍,是假手术组的9.9倍和5.4倍.BrdU和PSA-NCAM双标细胞在缺血发生后双侧SVZ和DG区可以检测到,于第7d计数最多,之后逐渐降低;而BrdU和MAP2以及BrdU和GFAP双标细胞却从第14d开始逐渐增多,直到第42d.随着BrdU/PSA-NCAM双标阳性表达的逐渐降低,BrdU/MAP2双标阳性表达逐渐增高,呈现此消彼涨的变化.结论:IGF-1侧脑室注射后,在早期(7d内)诱导了缺血性脑损伤后神经细胞的增殖;在中期(7d-14d)诱导了新生细胞的迁移;在后期(14d后)伴随着迁移的进行新生细胞逐渐发生了分化.  相似文献   

17.
In the mammalian brain, adult neurogenesis has been found to occur primarily in the subventricular zone (SVZ) and dentate gyrus of the hippocampus (DG) and to be influenced by both exogenous and endogenous factors. In the present study, we examined the effects of male exposure or social isolation on neurogenesis in adult female prairie voles (Microtus ochrogaster). Newly proliferated cells labeled by a cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), were found in the SVZ and DG, as well as in other brain areas, such as the amygdala, hypothalamus, neocortex, and caudate/putamen. Two days of male exposure significantly increased the number of BrdU-labeled cells in the amygdala and hypothalamus in comparison to social isolation. Three weeks later, group differences in BrdU labeling generally persisted in the amygdala, whereas in the hypothalamus, the male-exposed animals had more BrdU-labeled cells than did the female-exposed animals. In the SVZ, 2 days of social isolation increased the number of BrdU-labeled cells compared to female exposure, but this difference was no longer present 3 weeks later. We have also found that the vast majority of the BrdU-labeled cells contained a neuronal marker, indicating neuronal phenotypes. Finally, group differences in the number of cells undergoing apoptosis were subtle and did not seem to account for the observed differences in BrdU labeling. Together, our data indicate that social environment affects neuron proliferation in a stimulus- and site-specific manner in adult female prairie voles.  相似文献   

18.
We have previously reported the presence of dying cells in the granule cell layer (GCL) of adult rat dentate gyrus (DG), where neurogenesis occurs. In particular, we found that cell death in the GCL increased in vitamin E deficiency and decreased in vitamin E supplementation. These findings were regarded as related to changes in neurogenesis rate, which in turn was influenced by vitamin E availability; a neuroprotective effect of vitamin E on cell death was also proposed. In order to verify this latter hypothesis, we have studied cell death in all layers of DG in vitamin E-deficient and vitamin E-supplemented rats and in control rats at different ages, using TUNEL and nick translation techniques. The phenotype of TUNEL-positive cells was characterized and the existence of dying BrdU-positive cells was investigated. Dying cells with neuronal phenotype were observed throughout the DG in all experimental groups. The number of TUNEL-positive cells decreased from juvenile to adult age. A higher number of TUNEL-positive cells in vitamin E-deficient rats and a lower number in vitamin E-supplemented rats, with respect to age-matched controls, were found; moreover, in these groups, TUNEL-positive cells had a different percentage distribution in the different layers of the DG. Our results confirm the occurrence of cell death in DG, demonstrate that cell death affects neuronal cells and support the hypothesis that the effect of vitamin E on cell death is not related to neurogenesis.  相似文献   

19.
Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1-3 mM) produced a significant increase in the number of bromodeoxyuridine (BrdU)-positive cells in high-density cultures, but did not increase clonal size in low-density cultures. Lithium chloride at 1 mM (within the therapeutic range) also increased the number of cells double-labeled with BrdU antibody and TuJ1 (a class III beta-tubulin antibody) in high-density cultures and the number of TuJ1-positive cells in a clone of low-density cultures, whereas it decreased the number of glial fibrillary acidic protein-positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindin(D28k)-positive cells, and involved a phosphorylated extracellular signal-regulated kinase and phosphorylated cyclic AMP response element-binding protein-dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindin(D28k)-positive neuronal cell type.  相似文献   

20.
The fetal and even the young brain possesses a considerable degree of plasticity. The plasticity and rate of neurogenesis in the adult brain is much less pronounced. The present study was conducted to investigate whether housing conditions affect neurogenesis, learning, and memory in adult rats. Three‐month‐old rats housed either in isolation or in an enriched environment were injected intraperitoneally with bromodeoxyuridine (BrdU) to detect proliferation among progenitor cells and to follow their fate in the dentate gyrus. The rats were sacrificed either 1 day or 4 weeks after BrdU injections. This experimental paradigm allows for discrimination between proliferative effects and survival effects on the newborn progenitors elicited by different housing conditions. The number of newborn cells in the dentate gyrus was not altered 1 day after BrdU injections. In contrast, the number of surviving progenitors 1 month after BrdU injections was markedly increased in animals housed in an enriched environment. The relative ratio of neurogenesis and gliogenesis was not affected by environmental conditions, as estimated by double‐labeling immunofluorescence staining with antibodies against BrdU and either the neuronal marker calbindin D28k or the glial marker GFAp, resulting in a net increase in neurogenesis in animals housed in an enriched environment. Furthermore, we show that adult rats housed in an enriched environment show improved performance in a spatial learning test. The results suggest that environmental cues can enhance neurogenesis in the adult hippocampal region, which is associated with improved spatial memory. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 569–578, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号