首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
HEF1-dependent Aurora A activation induces disassembly of the primary cilium   总被引:11,自引:0,他引:11  
The mammalian cilium protrudes from the apical/lumenal surface of polarized cells and acts as a sensor of environmental cues. Numerous developmental disorders and pathological conditions have been shown to arise from defects in cilia-associated signaling proteins. Despite mounting evidence that cilia are essential sites for coordination of cell signaling, little is known about the cellular mechanisms controlling their formation and disassembly. Here, we show that interactions between the prometastatic scaffolding protein HEF1/Cas-L/NEDD9 and the oncogenic Aurora A (AurA) kinase at the basal body of cilia causes phosphorylation and activation of HDAC6, a tubulin deacetylase, promoting ciliary disassembly. We show that this pathway is both necessary and sufficient for ciliary resorption and that it constitutes an unexpected nonmitotic activity of AurA in vertebrates. Moreover, we demonstrate that small molecule inhibitors of AurA and HDAC6 selectively stabilize cilia from regulated resorption cues, suggesting a novel mode of action for these clinical agents.  相似文献   

2.
Non‐motile primary cilium is an antenna‐like structure whose defect is associated with a wide range of pathologies, including developmental disorders and cancer. Although mechanisms regulating cilia assembly have been extensively studied, how cilia disassembly is regulated remains poorly understood. Here, we report unexpected roles of Dishevelled 2 (Dvl2) and interphase polo‐like kinase 1 (Plk1) in primary cilia disassembly. We demonstrated that Dvl2 is phosphorylated at S143 and T224 in a manner that requires both non‐canonical Wnt5a ligand and casein kinase 1 epsilon (CK1ε), and that this event is critical to interact with Plk1 in early stages of the cell cycle. The resulting Dvl2–Plk1 complex mediated Wnt5a–CK1ε–Dvl2‐dependent primary cilia disassembly by stabilizing the HEF1 scaffold and activating its associated Aurora‐A (AurA), a kinase crucially required for primary cilia disassembly. Thus, via the formation of the Dvl2–Plk1 complex, Plk1 plays an unanticipated role in primary cilia disassembly by linking Wnt5a‐induced biochemical steps to HEF1/AurA‐dependent cilia disassembly. This study may provide new insights into the mechanism underlying ciliary disassembly processes and various cilia‐related disorders.  相似文献   

3.
We established a conditional deletion of Aurora A kinase (AurA) in Cdk1 analogue-sensitive DT40 cells to analyze AurA knockout phenotypes after Cdk1 activation. In the absence of AurA, cells form bipolar spindles but fail to properly align their chromosomes and exit mitosis with segregation errors. The resulting daughter cells exhibit a variety of phenotypes and are highly aneuploid. Aurora B kinase (AurB)-inhibited cells show a similar chromosome alignment problem and cytokinesis defects, resulting in binucleate daughter cells. Conversely, cells lacking AurA and AurB activity exit mitosis without anaphase, forming polyploid daughter cells with a single nucleus. Strikingly, inhibition of both AurA and AurB results in a failure to depolymerize spindle microtubules (MTs) in anaphase after Cdk1 inactivation. These results suggest an essential combined function of AurA and AurB in chromosome segregation and anaphase MT dynamics.  相似文献   

4.
The focal adhesion-associated signaling protein HEF1 undergoes a striking relocalization to the spindle at mitosis, but a function for HEF1 in mitotic signaling has not been demonstrated. We here report that overexpression of HEF1 leads to failure of cells to progress through cytokinesis, whereas depletion of HEF1 by small interfering RNA (siRNA) leads to defects earlier in M phase before cleavage furrow formation. These defects can be explained mechanistically by our determination that HEF1 regulates the activation cycle of RhoA. Inactivation of RhoA has long been known to be required for cytokinesis, whereas it has recently been determined that activation of RhoA at the entry to M phase is required for cellular rounding. We find that increased HEF1 sustains RhoA activation, whereas depleted HEF1 by siRNA reduces RhoA activation. Furthermore, we demonstrate that chemical inhibition of RhoA is sufficient to reverse HEF1-dependent cellular arrest at cytokinesis. Finally, we demonstrate that HEF1 associates with the RhoA-GTP exchange factor ECT2, an orthologue of the Drosophila cytokinetic regulator Pebble, providing a direct means for HEF1 control of RhoA. We conclude that HEF1 is a novel component of the cell division control machinery and that HEF1 activity impacts division as well as cell attachment signaling events.  相似文献   

5.
The dynamic regulation of focal adhesions is implicated in cellular processes of proliferation, differentiation, migration, and apoptosis. The focal adhesion-associated docking protein HEF1 is cleaved by caspases during both mitosis and apoptosis. Common to both of these cellular processes is the loss of focal adhesions, transiently during mitosis and permanently during apoptosis. The proteolytic processing of HEF1 during both mitosis and apoptosis therefore posits a general role for HEF1 as a sensor of altered adhesion states. In this study, we find that HEF1 undergoes proteolytic processing specifically in response to cellular detachment, while HEF1 proteolysis is prevented by specific integrin receptor ligation and focal adhesion formation. We show that overexpression of a C-terminal caspase-derived 28-kDa HEF1 peptide causes cellular rounding that is demonstrably separable from apoptosis. Mutation of the divergent helix-loop-helix motif found in 28-kDa HEF1 significantly reduces the induction of apoptosis by this peptide, while deletion of the amino-terminal 28 amino acids of 28-kDa HEF1 completely abrogates the induction of apoptosis. Conversely, these mutations have no effect on the rounding induced by 28-kDa HEF1. Finally, we detect a novel focal adhesion targeting domain located in the C terminus of HEF1 and show that this activity is necessary for HEF1-induced cell spreading. Together, these data suggest that proteolytic and other posttranslational modifications of HEF1 in response to loss of adhesion serve to modulate the disassembly of focal adhesions.  相似文献   

6.
Sardon T  Peset I  Petrova B  Vernos I 《The EMBO journal》2008,27(19):2567-2579
The centrosomal kinase Aurora A (AurA) is required for cell cycle progression, centrosome maturation and spindle assembly. However, the way it participates in spindle assembly is still quite unclear. Using the Xenopus egg extract system, we have dissected the role of AurA in the different microtubule (MT) assembly pathways involved in spindle formation. We developed a new tool based on the activation of AurA by TPX2 to clearly define the requirements for localization and activation of the kinase during spindle assembly. We show that localized AurA kinase activity is required to target factors involved in MT nucleation and stabilization to the centrosome, therefore promoting the formation of a MT aster. In addition, AurA strongly enhances MT nucleation mediated by the Ran pathway through cytoplasmic phosphorylation. Altogether, our data show that AurA exerts an effect as a key regulator of MT assembly during M phase and therefore of bipolar spindle formation.  相似文献   

7.
8.
HEF1, p130Cas, and Efs/Sin constitute a family of multidomain docking proteins that have been implicated in coordinating the regulation of cell adhesion. Each of these proteins contains an SH3 domain, conferring association with focal adhesion kinase; a domain rich in SH2-binding sites, phosphorylated by or associating with a number of oncoproteins, including Abl, Crk, Fyn, and others; and a highly conserved carboxy-terminal domain. In this report, we show that the HEF1 protein is processed in a complex manner, with transfection of a single cDNA resulting in the generation of at least four protein species, p115HEF1, p105HEF1, p65HEF1, and p55HEF1. We show that p115HEF1 and p105HEF1 are different phosphorylation states of the full-length HEF1. p55HEF1, however, encompasses only the amino-terminal end of the HEF1 coding sequence and arises via cleavage of full-length HEF1 at a caspase consensus site. We find that HEF1 proteins are abundantly expressed in epithelial cells derived from breast and lung tissue in addition to the lymphoid cells in which they have been predominantly studied to date. In MCF-7 cells, we find that expression of the endogenous HEF1 proteins is cell cycle regulated, with p105HEF1 and p115HEF1 being rapidly upregulated upon induction of cell growth, whereas p55HEF1 is produced specifically at mitosis. While p105HEF1 and p115HEF1 are predominantly cytoplasmic and localize to focal adhesions, p55HEF1 unexpectedly is shown to associate with the mitotic spindle. In support of a role at the spindle, two-hybrid library screening with HEF1 identifies the human homolog of the G2/M spindle-regulatory protein Dim1p as a specific interactor with a region of HEF1 encompassed in p55HEF1. In sum, these data suggest that HEF1 may directly connect morphological control-related signals with cell cycle regulation and thus play a role in pathways leading to the progression of cancer.  相似文献   

9.
10.
The mitotic kinase Aurora A (AurA) is regulated by a complex network of factors that includes co-activator binding, autophosphorylation, and dephosphorylation. Dephosphorylation of AurA by PP2A (human, Ser-51; Xenopus, Ser-53) destabilizes the protein, whereas mitotic dephosphorylation of its T-loop (human, Thr-288; Xenopus, Thr-295) by PP6 represses AurA activity. However, AurA(Thr-295) phosphorylation is restricted throughout the early embryonic cell cycle, not just during M-phase, and how Thr-295 is kept dephosphorylated during interphase and whether or not this mechanism impacts the cell cycle oscillator were unknown. Titration of okadaic acid (OA) or fostriecin into Xenopus early embryonic extract revealed that phosphatase activity other than PP1 continuously suppresses AurA(Thr-295) phosphorylation during the early embryonic cell cycle. Unexpectedly, we observed that inhibiting a phosphatase activity highly sensitive to OA caused an abnormal increase in AurA(Thr-295) phosphorylation late during interphase that corresponded with delayed cyclin-dependent kinase 1 (CDK1) activation. AurA(Thr-295) phosphorylation indeed influenced this timing, because AurA isoforms retaining an intact Thr-295 residue further delayed M-phase entry. Using mathematical modeling, we determined that one phosphatase would be insufficient to restrict AurA phosphorylation and regulate CDK1 activation, whereas a dual phosphatase topology best recapitulated our experimental observations. We propose that two phosphatases target Thr-295 of AurA to prevent premature AurA activation during interphase and that phosphorylated AurA(Thr-295) acts as a competitor substrate with a CDK1-activating phosphatase in late interphase. These results suggest a novel relationship between AurA and protein phosphatases during progression throughout the early embryonic cell cycle and shed new light on potential defects caused by AurA overexpression.  相似文献   

11.
We have previously shown that in a HEK-293 cell line that overexpresses the C1a isoform of the calcitonin receptor (C1a-HEK), calcitonin induces the tyrosine phosphorylation of the focal adhesion-associated proteins HEF1 (a p130(Cas)-like docking protein), paxillin, and focal adhesion kinase and that it also stimulates the phosphorylation and activation of Erk1 and Erk2. We report here that cell attachment to the extracellular matrix, an intact actin cytoskeleton, and c-Src are absolutely required for the calcitonin-induced phosphorylation of focal adhesion-associated proteins. In contrast to the phosphorylation of paxillin and HEF1 in cells attached to fibronectin-coated dishes, calcitonin failed to stimulate the phosphorylation of paxillin and HEF1 in suspended cells, in cells attached to poly-d-lysine-coated dishes, and in attached cells pretreated with the RGD-containing peptide GRGDS. Overexpression of wild-type c-Src increased calcitonin-induced paxillin and HEF1 phosphorylation, whereas overexpression of kinase-dead Src or Src lacking a functional SH2 domain inhibited the calcitonin-stimulated tyrosine phosphorylation of these proteins. Overexpression of Src lacking the SH3 domain did not affect the calcitonin-induced phosphorylation of paxillin and HEF1. In contrast to the regulation of paxillin and HEF1 phosphorylation, the calcitonin-induced phosphorylation of Erk1 and Erk2 did not appear to involve c-Src and was only partially dependent on cell adhesion to the extracellular matrix and an intact actin cytoskeleton. Furthermore, inhibition of Erk1 and Erk2 phosphorylation had no effect on the calcitonin-induced phosphorylation of paxillin and HEF1. Thus, in C1a-HEK cells, the calcitonin receptor is coupled to the tyrosine phosphorylation of focal adhesion-associated proteins and to Erk1/2 phosphorylation by mechanisms that are in large part independent.  相似文献   

12.
Serving as microtubule-organizing centers, centrosomes play a key role in forming bipolar spindles. The mechanism of how centrosomes promote bipolar spindle assembly in various organisms remains largely unknown. A recent study with Xenopus laevis egg extracts suggested that the Plk1 ortholog Plx1 interacts with the phospho-T46 (p-T46) motif of Xenopus Cep192 (xCep192) to form an xCep192-mediated xAurA-Plx1 cascade that is critical for bipolar spindle formation. Here, we demonstrated that in cultured human cells, Cep192 recruits AurA and Plk1 in a cooperative manner, and this event is important for the reciprocal activation of AurA and Plk1. Strikingly, Plk1 interacted with Cep192 through either the p-T44 (analogous to Xenopus p-T46) or the newly identified p-S995 motif via its C-terminal noncatalytic polo-box domain. The interaction between Plk1 and the p-T44 motif was prevalent in the presence of Cep192-bound AurA, whereas the interaction of Plk1 with the p-T995 motif was preferred in the absence of AurA binding. Notably, the loss of p-T44- and p-S995-dependent Cep192-Plk1 interactions induced an additive defect in recruiting Plk1 and γ-tubulin to centrosomes, which ultimately led to a failure in proper bipolar spindle formation and mitotic progression. Thus, we propose that Plk1 promotes centrosome-based bipolar spindle formation by forming two functionally nonredundant complexes with Cep192.  相似文献   

13.
Aurora-A is a conserved kinase implicated in mitotic regulation and carcinogenesis. Aurora-A was previously implicated in mitotic entry and spindle assembly, although contradictory results prevented a clear understanding of the roles of Aurora-A in mammals. We developed a conditional null mutation in the mouse Aurora-A gene to investigate Aurora-A functions in primary cells ex vivo and in vivo. We show here that conditional Aurora-A ablation in cultured embryonic fibroblasts causes impaired mitotic entry and mitotic arrest with a profound defect in bipolar spindle formation. Germ line Aurora-A deficiency causes embryonic death at the blastocyst stage with pronounced cell proliferation failure, mitotic arrest, and monopolar spindle formation. Aurora-A deletion in mid-gestation embryos causes an increase in mitotic and apoptotic cells. These results indicate that murine Aurora-A facilitates, but is not absolutely required for, mitotic entry in murine embryonic fibroblasts and is essential for centrosome separation and bipolar spindle formation in vitro and in vivo. Aurora-A deletion increases apoptosis, suggesting that molecular therapies targeting Aurora-A may be effective in inducing tumor cell apoptosis. Aurora-A conditional mutant mice provide a valuable system for further defining Aurora-A functions and for predicting effects of Aurora-A therapeutic intervention.The equal partitioning of chromosomes at mitosis is critical for avoiding aneuploidy, a condition associated with spontaneous miscarriage, developmental disorders, and cancer (50). Mitosis requires coordinated completion of multiple events including nuclear envelope breakdown, chromosome condensation and congression to the metaphase plate, centrosome separation, spindle formation, chromosome-spindle attachment and error correction, sister chromatid separation, and cytokinesis. Multiple regulators, many of which are kinases, are required to ensure that each event is completed in a timely fashion and in the proper order (reviewed in reference 46). Although a number of mitotic kinases have been identified, their targets and the intricacies of mitotic signal transduction pathways are just beginning to be understood.The Aurora kinases are key mitotic regulators in eukaryotes (reviewed in reference 45). The Aurora family includes a single member in yeasts (Saccharomyces cerevisiae Ipl1p, Schizosaccharomyces pombe Ark1), two members each in Caenorhabditis elegans and Drosophila, and two or three members in vertebrates. Although originally given a variety of names, Aurora kinases in multicellular eukaryotes have subsequently been classified into A, B, and C groups based on patterns of mitotic subcellular localization and homology, which also appear to reflect functional distinctions (8, 46). Aurora-A kinases are observed at centrosomes and adjacent spindle fibers, and current evidence supports key roles in regulating protein localization and function at centrosomes, as well as regulation of the assembly, stability, and function of the mitotic spindle (reviewed in reference 43). Aurora-B kinases display “chromosomal passenger” localization, residing on mitotic chromosomes and subsequently moving to the spindle midzone after separation of sister chromatids. Aurora-B family members have been implicated in the regulation of kinetochore-spindle attachment, the spindle checkpoint, and cytokinesis (reviewed in references 1 and 8). Aurora-C kinases, which have only been identified in mammals, have a limited expression pattern and appear to have functions that overlap those of Aurora-B (7, 53).The human Aurora-A kinase (hAurA) was first identified because of its overexpression in cancer cell lines (5, 58). The hAurA gene (stk15) resides on chromosome 20q13, a region frequently amplified in human cancers (5, 58). hAurA has been dubbed an oncogene because of the fact that its overexpression transforms immortalized rodent fibroblasts (5, 70). Polymorphisms in hAurA are associated with an increased risk of colon cancer, while murine AurA (mAurA) polymorphisms confer increased susceptibility to experimentally induced skin tumors (14). The mAurA gene is frequently amplified in radiation-induced lymphomas from p53 heterozygous mice, while loss of one mAurA allele has been observed in lymphomas from p53-null mice (41). Thus, aberrant AurA expression is associated with tumorigenesis, suggesting that insight into AurA functions will lead to a better understanding of tumorigenesis mechanisms.A number of experimental observations suggest that AurA kinases are required for normal centrosome maturation and bipolar spindle assembly. The AurA ortholog in Drosophila melanogaster (Aurora) was identified in a screen for mutations that impact the centrosome cycle (21). Syncytial embryos from hypomorphic Aurora mutant females display a variety of mitotic abnormalities resulting from a failure to separate centrosomes. Aurora-null flies die at the larval stage with characteristic monopolar spindles and circular chromosome arrays in larval neuroblasts. Such monopolar spindles arise from failed centrosome separation (21). Subsequent studies of Drosophila Aurora mutant alleles revealed additional defects in centrosome maturation (including a failure to localize transforming acidic coiled-coil protein, centrosomin, and γ-tubulin at centrosomes) and in asymmetric localization of Numb protein in sensory organ precursor cells (3, 17). Similar to the case in Drosophila, disruption of the C. elegans AurA ortholog AIR-1 by RNA interference (RNAi) or mutation causes defects in centrosome maturation and monopolar spindle formation. Centrosomes undergo normal separation but collapse, leading to monopolar spindle formation (16, 24, 56). Studies of the Xenopus AurA homolog pEg2 revealed similar phenotypes after overexpression of kinase-dead mutants, antibody-mediated inhibition, or immunodepletion (18, 19, 38, 52). Furthermore, Xenopus AurA has been shown to interact with and phosphorylate Eg5, a mitotic kinesin required for bipolar spindle formation, suggesting a possible mechanism by which AurA could influence bipolar spindle formation and/or stabilization (19). Thus, existing reports from these systems are quite consistent in implicating AurA in centrosome separation and function.In contrast to the systems described above, published reports of RNAi-mediated reduction of AurA expression in mammalian cell lines have contained conflicting results about the role of AurA in mitotic entry, bipolar spindle formation, and mitotic progression. AurA RNAi in HeLa cells was reported to block or delay mitotic entry, prompting the conclusion that AurA is essential for mitotic commitment in mammalian cells (27, 36). In contrast, other AurA RNAi studies showed accumulation of mitotic cells with monopolar spindles (12, 20, 67). These discrepancies call into question the functional conservation of AurA in mammals and highlight a need for additional studies to definitively address the roles of AurA. This is particularly critical for understanding the roles of AurA in cancer and for projecting possible effects of AurA inhibitors currently in development as anticancer agents. We used gene targeting in mouse embryonic stem (ES) cells to produce a conditional null allele at the AurA locus. Here we describe cellular phenotypes of AurA deletion in primary cells in vitro and developmental phenotypes of AurA mutant mice. We show that AurA deletion in primary embryonic fibroblasts causes delayed mitotic entry with accumulation of cells in early prophase, consistent with a role for AurA in mitotic entry. Nevertheless, AurA-deficient cells that enter prometaphase arrest with monopolar spindles and eventually exit mitosis without segregating their chromosomes. Prolonged culture of AurA-deficient cells leads to polyploidy with abnormal nuclear structure. Germ line AurA deficiency causes embryonic death at the blastocyst stage with mitotic arrest and monopolar spindle formation, while AurA deletion in mid-gestation embryos causes an increased mitotic index and increased apoptosis. Together, our findings indicate that AurA is required for timely mitotic entry and bipolar spindle formation in vitro and in vivo.  相似文献   

14.
Budding in Saccharomyces cerevisiae follows a genetically programmed pattern of cell division which can be regulated by external signals. On the basis of the known functional conservation between a number of mammalian oncogenes and antioncogenes with genes in the yeast budding pathway, we used enhancement of pseudohyphal budding in S. cerevisiae by human proteins expressed from a HeLa cDNA library as a morphological screen to identify candidate genes that coordinate cellular signaling and morphology. In this report, we describe the isolation and characterization of human enhancer of filamentation 1 (HEF1), an SH3-domain-containing protein that is similar in structure to pl30cas, a recently identified docking protein that is a substrate for phosphorylation by a number of oncogenic tyrosine kinases. In contrast to p130cas, the expression of HEF1 appears to be tissue specific. Further, whereas p130cas is localized predominantly at focal adhesions, immunofluorescence indicates that HEF1 localizes to both the cell periphery and the cell nucleus and is differently localized in fibroblasts and epithelial cells, suggesting a more complex role in cell signalling. Through immunoprecipitation and two-hybrid analysis, we demonstrate a direct physical interaction between HEF1 and p130cas, as well as an interaction of the SH3 domain of HEF1 with two discrete proline-rich regions of focal adhesion kinase. Finally, we demonstrate that as with p130cas, transformation with the oncogene v-abl results in an increase in tyrosine phosphorylation on HEF1, mediated by a direct association between HEF1 and v-Abl. We anticipate that HEF1 may prove to be an important linking element between extracellular signalling and regulation of the cytoskeleton.  相似文献   

15.
HEF1 (human enhancer of filamentation 1) is a member of a docking protein family that includes p130(Cas) and Efs. Through assembly of multiple protein interactions at focal adhesion sites, these proteins activate signaling cascades in response to integrin receptor binding of the extracellular matrix. The HEF1 protein is cell cycle regulated, with full-length forms cleaved in mitosis at a caspase consensus site to generate an amino-terminal 55-kDa form that localizes to the mitotic spindle. The identification of a caspase cleavage site in HEF1 led us to investigate whether HEF1 belongs to a select group of caspase substrates cleaved in apoptosis to promote the morphological changes characteristic of programmed cell death. Significantly, inducing expression of HEF1 in MCF-7 or HeLa cells causes extensive apoptosis, as assessed by multiple criteria. Endogenous HEF1 is cleaved into 65- and 55-kDa fragments and a newly detected 28-kDa form in response to the induction of apoptosis, paralleling cleavage of poly(ADP-ribose) polymerase and focal adhesion kinase (FAK); the death-promoting activity of over-expressed HEF1 is associated with production of the 28-kDa form. While the generation of the cleaved HEF1 forms is caspase dependent, the accumulation of HEF1 forms is further regulated by the proteasome, as the proteasome inhibitors N-acetyl-L-leucinyl-L-leucinyl-L-norleucinyl and lactacystin enhance their stability. Finally, the induction of HEF1 expression also increases Jun N-terminal protein kinase (JNK) activation, and activated JNK colocalizes with HEF1, implicating this pathway in HEF1 action. Based on these results, we propose that dysregulation of HEF1 and its family members along with FAK may signal the destruction of focal adhesion sites and regulate the onset of apoptosis.  相似文献   

16.
Aurora A kinase activity influences calcium signaling in kidney cells   总被引:1,自引:0,他引:1  
Most studies of Aurora A (AurA) describe it as a mitotic centrosomal kinase. However, we and others have recently identified AurA functions as diverse as control of ciliary resorption, cell differentiation, and cell polarity control in interphase cells. In these activities, AurA is transiently activated by noncanonical signals, including Ca(2+)-dependent calmodulin binding. These and other observations suggested that AurA might be involved in pathological conditions, such as polycystic kidney disease (PKD). In this paper, we show that AurA is abundant in normal kidney tissue but is also abnormally expressed and activated in cells lining PKD-associated renal cysts. PKD arises from mutations in the PKD1 or PKD2 genes, encoding polycystins 1 and 2 (PC1 and PC2). AurA binds, phosphorylates, and reduces the activity of PC2, a Ca(2+)-permeable nonselective cation channel and, thus, limits the amplitude of Ca(2+) release from the endoplasmic reticulum. These and other findings suggest AurA may be a relevant new biomarker or target in the therapy of PKD.  相似文献   

17.
Regulated timing of cell division cycles, and geometrical precision in the planar orientation of cell division, are critical during organismal development and remain important for the maintenance of polarized structures in adults. Mounting evidence suggests that these processes are coordinated at the centrosome through the action of proteins that mediate both cell cycle and cell attachment. Our recent work identifying HEF1 as an activator of the Aurora A kinase suggests a novel hub for such integrated signaling. We suggest that defects in components of the machinery specifying the temporal and spatial integration of cell division may induce cancer and other diseases through pleiotropic effects on cell migration, proliferation, apoptosis, and genomic stability.  相似文献   

18.
The primary cilium is an antenna-like organelle that modulates differentiation, sensory functions, and signal transduction. After cilia are disassembled at the G0/G1 transition, formation of cilia is strictly inhibited in proliferating cells. However, the mechanisms of this inhibition are unknown. In this paper, we show that trichoplein disappeared from the basal body in quiescent cells, whereas it localized to mother and daughter centrioles in proliferating cells. Exogenous expression of trichoplein inhibited primary cilia assembly in serum-starved cells, whereas ribonucleic acid interference-mediated depletion induced primary cilia assembly upon cultivation with serum. Trichoplein controlled Aurora A (AurA) activation at the centrioles predominantly in G1 phase. In vitro analyses confirmed that trichoplein bound and activated AurA directly. Using trichoplein mutants, we demonstrate that the suppression of primary cilia assembly by trichoplein required its ability not only to localize to centrioles but also to bind and activate AurA. Trichoplein or AurA knockdown also induced G0/G1 arrest, but this phenotype was reversed when cilia formation was prevented by simultaneous knockdown of IFT-20. These data suggest that the trichoplein-AurA pathway is required for G1 progression through a key role in the continuous suppression of primary cilia assembly.  相似文献   

19.
EB1 is an evolutionarily conserved protein that localizes to the plus ends of growing microtubules. In yeast, the EB1 homologue (BIM1) has been shown to modulate microtubule dynamics and link microtubules to the cortex, but the functions of metazoan EB1 proteins remain unknown. Using a novel preparation of the Drosophila S2 cell line that promotes cell attachment and spreading, we visualized dynamics of single microtubules in real time and found that depletion of EB1 by RNA-mediated inhibition (RNAi) in interphase cells causes a dramatic increase in nondynamic microtubules (neither growing nor shrinking), but does not alter overall microtubule organization. In contrast, several defects in microtubule organization are observed in RNAi-treated mitotic cells, including a drastic reduction in astral microtubules, malformed mitotic spindles, defocused spindle poles, and mispositioning of spindles away from the cell center. Similar phenotypes were observed in mitotic spindles of Drosophila embryos that were microinjected with anti-EB1 antibodies. In addition, live cell imaging of mitosis in Drosophila embryos reveals defective spindle elongation and chromosomal segregation during anaphase after antibody injection. Our results reveal crucial roles for EB1 in mitosis, which we postulate involves its ability to promote the growth and interactions of microtubules within the central spindle and at the cell cortex.  相似文献   

20.
The Aurora A (AurA) serine/threonine kinase controls multiple aspects of cell division and plays a key role in centrosome maturation and bipolar spindle assembly. The pleiotropic functions of AurA depend on its interaction with several cofactors, the best known of which is TPX2. TPX2 targets AurA to spindle microtubules (MTs) and activates it, both allosterically and by protecting the activation loop (T-loop) of the kinase domain from dephosphorylation. Although several factors have been implicated in the regulation of AurA at centrosomes, the underlying mechanism has remained elusive, and the existence of a distinct centrosome-specific AurA activator has been proposed. Our recent study has identified this activator as Cep192/Spd-2, one of the key factors in centrosome biogenesis. Cep192 targets AurA to centrosomes, where it promotes its activation by a novel, oligomerization-dependent mechanism characterized by extensive T-loop phosphorylation and high kinase activity. This process is key to the function of centrosomes as microtubule-organizing centers. Here, our findings are discussed in the context of other recent studies on the Aurora kinases, with an emphasis on their role in spindle assembly. The collected evidence suggests that the ‘hot spots’ of MT nucleation, centrosomes and kinetochores, rely on the oligomerization-mediated mechanism of activation of AurA and AurB, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号