首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isolation of a maize cDNA clone that encodes a membrane spanning protein kinase related to the self-incompatibility glycoproteins (SLG) of Brassica and structurally similar to the growth factor receptor tyrosine kinases has recently been reported. Three distinct receptor-like protein kinase (RLK) cDNA clones from Arabidopsis thaliana have now been identified. Two of the Arabidopsis RLK genes encode SLG-related protein kinases but have different patterns of expression: one is expressed predominantly in rosettes while the other is expressed primarily in roots. The third RLK gene contains an extracellular domain that consists of 21 leucine-rich repeats that are analogous to the leucine-rich repeats found in proteins from humans, flies and yeast. The Arabidopsis leucine-rich gene is expressed at equivalent levels in roots and rosettes. These results show that there are several genes in higher plants that encode members of the receptor protein kinase superfamily. The structural diversity and differential expression of these genes suggest that each plays a distinct and possibly important role in cellular signaling in plants.  相似文献   

2.
As part of our continuing program to understand the molecular mechanisms controlling the synthesis of sperm-specific nuclear proteins (SPs1–6) during spermatogenesis in Xenopus, we report here on the isolation of a cDNA clone for SP5, the partial sequencing of the amino acids in the SPs, and the expression of the mRNA for SP5. A cDNA clone (pXSP633) was isolated from a cDNA library, previously prepared from poly (A)+ mRNA obtained from Xenopus round spermatids. Determination of the amino acid sequence of the N-terminal regions of all the SPs(1–6) suggested that pXSP633 encodes SP5, whereas SPs3, 4, and 6 are derived from a second mRNA species, and SPs1 and 2 from a third mRNA species. Thus it seems likely that the six SPs are derived from three different mRNA species. Northern blot analyses of RNA, extracted from primary spermatocytes and round spermatids, was performed with oligonucleotide probes specific for SPs4 and 5 mRNAs. The results showed that whereas both SPs4 and 5 mRNAs are expressed in primary spermatocytes, the amount of SP5 mRNA is only about one-fifth of that of SP4 mRNA. However, both mRNA species undergo a similar size change in the length of their poly (A) tracts during spermatogenesis: the size of the mRNA in cultured round spermatids on day 0 was longer than that in primary spermatocytes, but the size of the mRNA in round spermatids on day 6 was shorter than that in round spermatids on day 0. © 1994 Wiley-Liss, Inc.  相似文献   

3.
cDNA encoding for a sperm antigen, designated NZ-1, was cloned and sequenced from murine testis cDNA-λgt11 expression library using antibodies to human sperm surface antigens belonging to 14–18 kD molecular region. These sperm antigens are involved in zona pellucida binding and have tyrosine phyosphorylation activity. Computer generated translation analysis of 1395-bp cDNA yielded an open reading frame (ORF) of 152 aa with first ATG, Met start codon at nt 32 and the stop codon TGA at nt 487. The translated protein has a calculated molecular weight of 17.9 kD and a potential tyrosine phosphorylation site at aa 46–54, besides at least two O-linked glycosylation sites. The hydropathy plot generated from the deduced aa sequence indicated it to be a membrane-anchored peptide with a hydrophobic NH2-terminus that is characteristic of a signal peptide. Extensive computer search in the GenBank, NBRF, and Swiss sequence banks, indicating it to be a novel protein. Northern blot analysis indicated testis-specific expression of NZ-1 antigen. The NZ-1 cDNA was subcloned into pGEX-1λT vector and expressed in glutathione-S-transferase gene fusion system to obtain the recombinant protein. The recombinant protein specifically reacted with the original antibodies raised against the native 14–18 kD sperm proteins. These findings suggest that the sperm-specific recombinant NZ-1 may find applications in the development of a contraceptive vaccine, and in studying the normal and abnormal sperm function and the signal transduction mechanism. Mol. Reprod. Dev. 48:449–457, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that are activated in response to a variety of stimuli. Here we report the isolation of an alfalfa cDNA encoding a functional MAP kinase, termedMMK2. The predicted amino acid sequence ofMMK2 shares 65% identity with a previously identified alfalfa MAP kinase, termedMMK1. Both alfalfa cDNA clones encode functional kinases when expressed in bacteria, undergoing autophosphorylation and activation to phosphorylate myelin basic protein in vitro. However, only MMK2 was able to phosphorylate a 39 kDa protein from the detergent-resistant cytoskeleton of carrot cells. The distinctiveness ofMMK2 was further shown by complementation analysis of three different MAP kinase-dependent yeast pathways; this revealed a highly specific replacement of the yeastMPK1 (SLT2) kinase byMMK2, which was found to be dependent on activation by the upstream regulators of the pathway. These results establish the existence of MAP kinases with different characteristics in higher plants, suggesting the possibility that they could mediate different cellular responses.  相似文献   

5.
Five genes coding for ice-active proteins were identified from an expressed sequence tag database of Lolium perenne cDNA libraries. Each of the five genes were characterized by the presence of an N-terminal signal peptide, a region enriched in hydrophilic amino acids and a leucine-rich region in four of the five genes that is homologous with the receptor domain of receptor-like protein kinases of plants. The C-terminal region of all five genes contains sequence homologous with Lolium and Triticum ice-active proteins. Of the four ice-active proteins (IAP1, IAP2, IAP3 and IAP5) cloned, three could be expressed in Escherichia coli and recovered in a functional form in order to study their ice activity. All three ice-active proteins had recrystallization inhibition activity but showed no detectable antifreeze or ice nucleation activity at the concentration tested. IAP2 and IAP5 formed distinct hexagonal-shaped crystals in the nanolitre osmometer as compared to the weakly hexagonal crystals produced by IAP3.  相似文献   

6.
Type 1 phosphoprotein Ser/Thr phosphatases (PP1) are highly conserved enzymes found in all eukaryotes. These enzymes have multiple functions in fungal and animal cells but little is known of their function and regulation in plants. Previous studies in our laboratory indicated that maize and Arabidopsis contain a family of PP1 genes and/or pseudogenes. In this study, we report the isolation of five distinct Arabidopsis cDNA clones (TOPP1, TOPP2, TOPP3, TOPP4 and TOPP5) which encode the catalytic subunit (PP1c) of type 1 protein phosphatases. Genomic Southern blot analyses indicate that these clones are the products of five distinct genes and that an additional 2–3 PP1c genes and/or pseudogenes may be present in the Arabidopsis genome. The derived amino acid sequences of the TOPP clones are very similar to published sequences of PP1c from animals, fungi and plants. Four of the TOPP amino acid sequences show unique structural features not observed in other PP1c sequences from fungi or animals. All of the TOPP genes are expressed in Arabidopsis roots, rosettes and flowers, although TOPP1, TOPP2 and TOPP3 appear to be expressed at higher levels in these tissues than TOPP4 and TOPP5.  相似文献   

7.
Abstract: Results reported in this paper show that carrot cells contain a thermostable inhibiting activity for cytosine‐5‐DNA methyltransferase that, upon filtration chromatography, can be resolved into three major peaks. Inhibiting activity was found in all plant species tested, though at a concentration lower than in carrot. These inhibiting activities differ in size, sensitivity to various hydrolytic treatments, specificity for DNA METases of eukaryotic and bacterial origin and kinetics of inhibition. Results of chemical analyses indicate that the inhibitors differ from lipidic inhibitors described in Escherichia coli and Streptomyces sp. and, given their sensitivity to proteinase K, appear to have a proteinaceous nature. The addition of these inhibitors (Sephadex G25 peak II and peak III) to actively growing suspension rice cells reduced the rate of in vivo DNA methylation without interfering with DNA synthesis. Peak II also induced a general demethylation effect in carrot cell suspension, even if weaker than that caused by 5‐azacytidine. Interestingly, inhibitors suppressed carrot embryogenesis but did not prevent undifferentiated cell proliferation of suspension cultures.  相似文献   

8.
The phenylalanine ammonia-lyase (PAL) gene, DcPAL3, was expressed during the synthesis of anthocyanin in suspension-cultured cells of carrot (Daucus carota). There were two putative cis-elements in the DcPAL3 promoter region: the box-L and GCC-box homologs. Both of these are committed to the upregulation of promoter activity. Although box-L is known as the conserved cis-element present in the promoter region of most PAL genes of many plant species targeted by the R2R3-MYB protein, among PAL genes, the GCC-box homolog is unique to the promoter region of the DcPAL3 gene. We have isolated two proteins belonging to the ethylene-responsive element-binding factor (ERF) family, DcERF1 and DcERF2, from two different cDNA libraries prepared from anthocyanin-synthesizing cells of different cultured cell lines of carrot. The methodology employed was yeast one-hybrid screening with the GCC-box homolog as a bait. Both DcERF1 and DcERF2 bound to the GCC-box homolog sequence in vitro. Transient expression analysis showed that, in carrot protoplasts, DcERF1 was able bind to the GCC-box homolog and act as an activator of the DcPAL3 promoter. In contrast, DcERF2 itself had no ability to activate DcPAL3 promoter activity, possibly because transiently expressed DcERF2 may not be exported into the nucleus. These results suggest that DcERF1 and DcERF2 may function in different ways in committing to the upregulation of the DcPAL3 promoter activity in anthocyanin-synthesizing cells of carrot.  相似文献   

9.
A full-length cDNA clone encoding aspartate aminotransferase (AAT) has been identified from a carrot root cDNA library. Degenerate oligo primers were synthesized from the known amino acid sequence of AAT form I from carrot (Daucus carota L. cv Danvers). These primers were utilized in a polymerase chain reaction to amplify a portion of a carrot AAT gene from first strand cDNA synthesized from poly(A)+ RNA isolated from 5-d-old cell suspension cultures. The resulting 750-bp fragment was cloned, mapped, and sequenced. The cloned fragment, mpAAT1, was used as a probe to identify a full-length cDNA clone in a library constructed from poly(A)+ RNA isolated from carrot roots. A 1.52-kb full-length clone, AAT7, was isolated and sequenced. AAT7 has 54% nucleotide identity with both the mouse cytoplasmic and mitochondrial AAT genes. The deduced amino acid sequence has 52 and 53% identity with the deduced amino acid sequences of mouse cytoplasmic and mitochondrial AAT genes, respectively. Further analysis of the sequence data suggests that AAT7 encodes a cytoplasmic form of carrot AAT; the evidence includes the (a) absence of a transit or signal sequence, (b) lack of “m-residues,” or invariant mitochondrial residues, in the carrot AAT sequence, and (c) high degree of sequence similarity with the amino acid sequence previously obtained for form I of carrot, a cytoplasmic isoenzyme. High- and low-stringency hybridizations to Southern blots of carrot nuclear DNA with AAT7 show that AAT is part of a small multigene family. Northern blot analysis of AAT7 suggests that AAT is expressed throughout cell culture up to 7 d and is highly expressed in roots but not in leaves.  相似文献   

10.
Wu Q  Xu M  Cheng C  Zhou Z  Huang Y  Zhao W  Zeng L  Xu J  Fu X  Ying K  Xie Y  Mao Y 《Molecular biology reports》2001,28(4):193-198
Short-chain dehydrogenases/reductases (SDR) constitute a large protein family of NAD(P)(H)-dependent oxidoreductase. They are defined by distinct, common sequence motifs and show a wide range of substrate specialisms. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a novel human SDR-type dehydrogenase/reductase gene named Dehydrogenase/reductase (SDR family) member 1 (DHRS1). The DHRS1 cDNA is 1411 base pair in length, encoding a 314-amino-acid polypeptide which has a SDR motif. Northern blot reveals two bands, of about 0.9 and 1.4 kb in size. These two forms are expressed in many tissues. The DHRS1 gene is localized on chromosome 14q21.3. It has 9 exons and spans 9.2 kb of the genomic DNA.  相似文献   

11.
A cDNA clone, corresponding to mRNAs preferentially expressed in the roots of bean (Phaseolus vulgaris L.) seedlings, was isolated. This clone contains a 381 bp open reading frame encoding a polypeptide of 13.5 kDa, designated PVR5 (Phaseolus vulgaris root 5). The amino acid sequence of this clone is rich in proline (13.5%) and leucine (12.7%) and shares significant amino acid sequence homology with root-specific and proline-rich proteins from monocots (maize and rice), and proline-rich proteins from dicots (carrot, oilseed rape, and Madagascar periwinkle). The precise biological roles of these polypeptides are unknown. PVR5 mRNA accumulation is developmentally regulated within the root, with high levels at the root apex and declining levels at distances further from the root tip. In situ hybridization shows that PVR5 mRNA specifically accumulates in the cortical ground meristem in which maximal cell division occurs. Southern blot analysis suggests that genomic DNA corresponding to PVR5 cDNA is encoded by a single gene or a small gene family.  相似文献   

12.
Aims: Penicillium echinulatum is effective for bioconversion processes. However, nothing is known about the molecular biology of its cellulolytic system. We describe for the first time the isolation, cloning and expression of a P. echinulatum cellulase cDNA (Pe‐egl1) encoding a putative endoglucanase. Methods and Results: Pe‐egl1 cDNA was identified from random sequencing of a P. echinulatum cDNA library. The deduced EGL1 protein possibly belongs to the glycosyl hydrolase family 5A, with 387 amino acid residues and strong similarity with other fungal endoglucanases. The cDNA was heterologously expressed in Pichia pastoris. The recombinant EGL1 secreted by a Pic. pastoris recombinant strain revealed the characteristics of particular interest: an optimal activity over a broad pH range (5·0–9·0), and an optimal temperature of 60°C. The recombinant EGL1 also showed high thermostability (84% of residual activity after 1 h of pre‐incubation at 70°C). Calcium exerted a strong stimulatory effect over EGL1 activity. Conclusions: Altogether, these results point to the potential application of this P. echinulatum endoglucanase in cellulose processing industries, particularly the textile one because of its biochemical properties. Significance and Impact of the Study: The characterization and heterologous expression of the first Pechinulatun cDNA inaugurates the exploitation of this potential industrial micro‐organism.  相似文献   

13.
Protein–protein interactions play a central role in the gamete attraction, binding, and fusion stages of gamete interactions and fertilization for broadcast spawning species, such as marine mussels in the Mytilus edulis species complex. Although assortative gamete interaction has been implicated in the level of reproductive isolation among the three species in this complex, the molecular basis of these interactions has not been elucidated. Using mass spectrometry peptide sequencing, cDNA sequencing, and bioinformatics approaches, we have investigated species-level variation in the proteins expressed on the surface of mussel eggs. We herein describe an extracellular protein, MESP-1, from the surface of the eggs of M. edulis and M. trossulus that has a unique domain structure when compared to protein structures that have heretofore been identified. Given variation in the size of MESP-1 predicted from cDNA sequences versus those estimated from SDS-PAGE gels, we conclude this protein is subject to significant species-specific post-translation modifications. Further, bioinformatic analysis of the novel structure of MESP-1 suggests that this protein may be an integral membrane protein involved in sperm–egg fusion, and/or released to the vitelline envelope.  相似文献   

14.
Summary: Oocyte‐somatic cell communication is necessary for normal ovarian function. However, the identities of the majority of oocyte‐secreted proteins remain unknown. A novel cDNA encoding mouse oo cyte‐s ecreted p rotein 1 (OOSP1) was identified using a modified subtractive hybridization screen. The Oosp1 cDNA encodes a 202‐amino acid protein that contains a 21‐amino acid signal peptide sequence, 5 putative N‐linked glycosylation consensus sequences, and 6 cysteines that are predicted to form 3 disulfide bonds. OOSP1 shares amino acid identity with placental‐specific protein 1 (PLAC1), a secreted protein expressed in the placenta and the ectoplacental cone. The Oosp1 mRNA is approximately 1.0 kb and is present at high levels in the oocytes of adult ovaries and at lower levels in the spleen. The mouse Oosp1 gene is 5 exons, spans greater than 16.4 kb, and localizes to chromosome 19 at a position that shares synteny with human chromosome 11q12–11q13. The identification of OOSP1 as a new oocyte‐secreted protein permits future in vitro and in vivo functional analyses to define its role in ovarian folliculogenesis. genesis 31:105–110, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
16.
Acylation of anthocyanins with hydroxycinnamic acid derivatives is one of the most important and less understood modification reactions during anthocyanin biosynthesis. Anthocyanin aromatic acyltransferase catalyses the transfer of hydroxycinnamic acid moieties from their CoA esters to the glycosyl groups of anthocyanins. A full-length cDNA encoding the anthocyanin 5-aromatic acyltransferase (5AT) ( EC 2.3.1.153 ) that acylates the glucose bound at the 5-position of anthocyanidin 3,5-diglucoside was isolated from petals of Gentiana triflora on the basis of the amino acid sequence of the purified enzyme. The isolated full-length cDNA had an open reading frame of 469 amino acids and the calculated molecular weight was 52 736. The deduced amino acid sequence contains consensus motifs that are conserved among the putative acyl CoA-mediated acyltransferases, and this indicates that 5AT is a member of a proposed superfamily of multifunctional acyltransferases ( St-Pierre et al . (1998 ) Plant J. 14, 703–713). The cDNA was expressed in Escherichia coli and yeast, and confirmed to encode 5AT. The enzymatic characteristics of the recombinant 5AT were consistent with those of the native gentian 5AT. Immunoblot analysis using specific antibodies to 5AT showed that the 5AT protein is present in petals, but not in sepals, stems or leaves of G. triflora . RNA blot analysis showed that the 5AT gene is expressed only in petals and that its expression is temporally regulated during flower development coordinately with other anthocyanin biosynthetic genes. Immunohistochemical analysis demonstrated that the 5AT protein is specifically expressed in the outer epidermal cells of gentian petals and that it is localized mainly in the cytosol.  相似文献   

17.
18.
The overall architectural pattern of the mature plant is established during embryogenesis. Very little is known about the molecular processes that underlie embryo morphogenesis. Last decade has, nevertheless, seen a burst of information on the subject. The synchronous somatic embryogenesis system of carrot is largely being used as the experimental system. Information on the molecular regulation of embryogenesis obtained with carrot somatic embryos as well as observations on sandalwood embryogenic system developed in our laboratory are summarized in this review. The basic experimental strategy of molecular analysis mostly relied on a comparison between genes and proteins being expressed in embryogenic and non-embryogenic cells as well as in the different stages of embryogenesis. Events such as expression of totipotency of cells and establishment of polarity which are so critical for embryo development have been characterized using the strategy. Several genes have been identified and cloned from the carrot system. These include sequences that encode certain extracellular proteins (EPs) that influence cell proliferation and embryogenesis in specific ways and sequences of the abscisic acid (ABA) inducible late embryogenesis abundant (LEA) proteins which are most abundant and differentially expressed mRNAs in somatic embryos. That LEAs are expressed in the somatic embryos of a tree flora also is evidenced from studies on sandalwood. Several undescribed or novel sequences that are enhanced in embryos were identified. A sequence of this nature exists in sandalwood embryos was demonstrated using aCuscuta haustorial (organ-specific) cDNA probe. Somatic embryogenesis systems have been used to assess the expression of genes isolated from non-embryogenic tissues. Particular attention has been focused on both cell cycle and histone genes  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号