首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
禽病原性大肠杆菌1型菌毛的分离与鉴定   总被引:4,自引:1,他引:4  
以旋涡混合法使禽病原性大肠杆菌分离株566、1794和TK3菌毛脱落,经硫酸铵沉淀、透析后进行蔗糖密度梯度离心,收集密度为110至115g/cm3的蛋白带,经SDSPAGE测定,3株菌菌毛蛋白的分子量分别在175、170和170kD;提纯菌毛保留了甘露糖敏感性凝集豚鼠红细胞的能力,证明它们为1型菌毛;从1794株提取的1型菌毛免疫BALB/C小鼠产生的高免血清在Western blot中与3个菌株的相应菌毛蛋白均呈阳性反应。上述结果表明,受检的3株禽病原性大肠杆菌均表达了1型菌毛,其分子量在175~170kD之间,3个菌株的1型菌毛间具有较强的抗原相关性。  相似文献   

3.
4.
Cell-free extract of E. coli possessed an inhibited adenylate cyclase activity after a previous anaerobic incubation of cells with glucose which is transported and metabolized. The degree of the inhibition depends on incubation conditions. Glucose analogues that are only transported but not metabolized, are not inhibitory. To restore the adenylate cyclase activity, the cells have to be cultivated aerobically prior to disintegration for a defined period of time without glucose.  相似文献   

5.
Many gram-negative bacteria produce thin protein filaments, named pili, which extend beyond the confines of the outer membrane. The importance of these pili is illustrated by the fact that highly complex, multi-protein pilus-assembly machines have evolved, not once, but several times. Their many functions include motility, adhesion, secretion, and DNA transfer, all of which can contribute to the virulence of bacterial pathogens or to the spread of virulence factors by horizontal gene transfer. The medical importance has stimulated extensive biochemical and genetic studies but the assembly and function of pili remains an enigma. It is clear that progress in this field requires a more holistic approach where the entire molecular apparatus that forms the pilus is studied as a system. In recent years systems biology approaches have started to complement classical studies of pili and their assembly. Moreover, continued progress in structural biology is building a picture of the components that make up the assembly machine. However, the complexity and multiple-membrane spanning nature of these secretion systems pose formidable technical challenges, and it will require a concerted effort before we can create comprehensive and predictive models of these remarkable molecular machines.  相似文献   

6.
Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on theE. coli chromosome. ThenarGHJI operon, encoding nitrate reductaseA, is located in thechlC locus at 27 minutes, along with several functionally related genes:narK, encoding a nitrate/nitrite antiporter, and thenarXL operon, encoding a nitrate-activated, two component regulatory system. ThenarZYWV operon, encoding nitrate reductase Z, is located in thechlZ locus located at 32.5 minutes, a region which includes anarK homologue,narU, but no apparent homologue to thenarXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both thenarGHJI operon and thenarK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while thenarZYWV operon and thenarU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase inE. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined.Abbreviations NR nitrate reductase On leave from Department of Biochemistry and Molecular Biology, The University of Texas Medical school at Houston, Houston, Texas, 77225, USA  相似文献   

7.
Strains carrying deletions in theatp genes, encoding the H+-ATPase, were unable to grow on nonfermentable substrates such as succinate, whereas with glucose as the substrate the growth rate of anatp deletion mutant was surprisingly high (some 75–80% of wild-type growth rate). The rate of glucose and oxygen consumption of these mutants was increased compared to the wild-type rates. In order to analyze the importance of the H+-ATPase at its physiological level, the cellular concentration of H+-ATPase was modulated around the wild-type level, using genetically manipulated strains. The control coefficient by the H+-ATPase with respect to growth rate and catabolic fluxes was measured. Control on growth rate was absent at the wild-type concentration of H+-ATPase, independent of whether the substrate for growth was glucose or succinate. Control by the H+-ATPase on the catabolic fluxes, including respiration, was negative at the wild-type H+-ATPase level. Moreover, the turnover number of the individual H+-ATPase enzymes increased as the H+-ATPase concentration was lowered. The negative control by the H+-ATPase on catabolism may thus be involved in a homeostatic control of ATP synthesis and, to some extent, explain the zero control by the H+-ATPase onE. coli growth rate.  相似文献   

8.
Summary The polyamine content in cells is regulated by both polyamine biosynthesis and its transport. We recently obtained and characterized three clones of polyamine transport genes (pPT104, pPT79 and pPT71) inEscherichia coli. The system encoded by pPT104 was the spermidine-preferential uptake system and that encoded by pPT79 the putrescine-specific uptake system. Furthermore, these two systems were periplasmic transport systems consisting of four kinds of proteins: pPT104 clone encoded potA, -B,-C, and -D proteins and pPT79 clone encoded potF, -G, -H, and -I proteins, judging from the deduced amino acid sequences of the nucleotide sequences of these clones. PotD and -F proteins were periplasmic substrate binding proteins and potA and -G proteins membrane associated proteins having the nucleotide binding site. PotB and -C proteins, and potH and -I proteins were transmembrane proteins probably forming channels for spermidine and putrescine, respectively. Their amino acid sequences in the corresponding proteins were similar to each other. The functions of potA and -D proteins in the spermidine-preferential uptake system encoded by pPT104 clone were studied in detail through a combined biochemical and genetic approach. In contrast, the putrescine transport system encoded by pPT71 consisted of one membrane protein (potE protein) haveing twelve transmembrane segments, and was active in both the uptake and excretion of putrescine. The uptake was dependent on membrane potential, and the excretion was due to the exchange reaction between putrescine and ornithine.  相似文献   

9.
10.
The localization ofl-asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1) EC-2 isoenzyme was studied inEscherichia coli ATCC 9637 grown under conditions of moderate aeration. The enzyme was determined in cell fractions obtained by fraction centrifugation of lysed spheroplasts. When the synthesis of the enzyme was induced byl-asparagine, its amount in the cytoplasmic fraction at the beginning of the induction exceeded as much as five times that in uninduced cells, attaining up to 20% of the total activity. In the course of growth of the culture this activity decreased gradually to zero. The membrane fraction of induced cells contained considerable amount of EC-2l-asparaginase which, at the beginning of the induction, reached up to 6% ot the total enzymic activity; in membrane fraction of control cells the activity was close to zero. The results indicate a relationship of cell structures to thel-asparagine-induced synthesis of the enzyme.  相似文献   

11.
Abstract Expression of globoside-specific pilus adhesin of Escherichia coli is the virulence factor most commonly associated with pyelonephritis. In the clinical isolate J96 (O4:K6:H5) expression of globoside binding pili require the proteins encoded by the papE, papF , and papG genes in the pap gene cluster. Probes derived from these genes were used in dot blot hybridization analysis of E. coli urinary tract isolates obtained from patients with significant bacteriuria. Fecal E. coli isolates from healthy individuals were also analyzed. The probe encompassing the papF and papF J96 genes hybridized to all urinary tract infectious (UTI) isolates expressing globoside-specific adhesin, whereas papG J96 only hybridized to the strain from which the fragment was cloned. In contrast, a papG -specific probe from the O:6 strain IA2 hybridized to all but one of the UTI isolates that expressed the adhesin. In both materials, but especially among the fecal isolates, strains were found that hybridized to the probes but did not express the adhesin. The data shows that papEF -specific DNA can be used for the diagnosis of potentially pyelonephritic E. coli .  相似文献   

12.
Three proteins possessing alkaline phosphatase activity were detected in a fraction of periplasmic material ofEscherichia coli K-10 and its mutants with constitutive synthesis of alkaline phosphatase. They also showed acid phosphatase, pyrophosphatase and ATPase activities. Through the use of phosphatase-negative mutants it was shown that these proteins were the products of a single structural gene and therefore represented alkaline phosphatase isozymes. The numbers of enzyme isoforms and possibly the spectrum of their phosphohydrolase activities were controlled by exogenous orthophosphate and depended on the integrity of regulator genes for alkaline phosphatase.  相似文献   

13.
14.
The present paper describes isolation and purification ofa-hemolysin ofEscherichia coli. The optimum production medium was found to be the Todd—Hewitt broth. Out of thirteen fractions obtained after separation on Sephadex G-200, two fractions possessed the highest relative specific activity.  相似文献   

15.
Transductional analysis indicates that theicd cistron, which codes for isocitrate dehydrogenase (E.C. 1.1.1.42), is located between thepurB anddadR cistrons.  相似文献   

16.
Expression of theunc genes inEscherichia coli   总被引:7,自引:0,他引:7  
Theunc (or atp) operon ofEscherichia coli comprises eight genes encoding the known subunits of the proton-translocating ATP synthase (H+-ATPase) plus a ninth gene (uncI) of unknown function. The subunit stoichiometry of the H+-ATPase ( 33111a1b2c10–15) requires that the respectiveunc genes be expressed at different rates. This review discusses the experimental methods applied to determining how differential synthesis is achieved, and evaluates the results obtained. It has been found that the primary level of control is translational initiation. The translational efficiencies of theunc genes are determined by primary and secondary mRNA structures within their respective translational initiation regions. The respective rates of translation are matched to the subunit requirements of H+-ATPase assembly. Finally, points of uncertainty remain and experimental strategies which will be important in future work are discussed.  相似文献   

17.
18.
TwoEscherichia coli clones expressingMycobacterium tuberculosis antigens were isolated from a gene-bank in the plasmid vector pBR 325. ‘Western blot’ analysis revealed the presence of a unique protein band of molecular weight 68,000 and 38,000, respectively in cellextracts from each clone. The 68,000 dalton antigen was found to be expressed onEscherichia coli outer surface. Plasmid DNA from a third clone could confer leucine independence on two differentleu B mutants ofEscherichia coli but not on mutants in otherleu genes, pointing to the possibility ofgenetic complementation. Thus,Mycobacterium tuberculosis DNA is capable of expression inEscherichia coli.  相似文献   

19.
The phenomenon of Cairnsian mutagenesis was studied inEscherichia coli mutants bearing mutations inmutS,mutL,recA andlexA genes. It is shown that development of resistance to exogenous valine could be used as an example of Cairnsian response. Strains defective inmutS andmutL show a high frequency of Cairnsian mutagenesis to valine resistance. The response inmutS mutants is dependent upon cleavability of the LexA protein whereas that inmutL is not. The latter is independent ofrecA also. The need for LexA protein cleavage inmutS mutants can be bypassed by over-production of the RecA protein due to arecA operator constitutive mutation. Genetic evidence is presented to show that the products ofmutS andmutL genes negativelycontrol two pathways of Cairnsian mutagenesis. Cairnsian response is also elicited whenmutS ormutL strains are grown under conditions wherein a required nutrient is present in sub-optimal concentrations. Random, unselected mutagenic events are likely to occur during or after Cairnsian mutagenesis provided the cells are SOS inducible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号