首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel bacteriocin produced by avian duck isolated lactic acid bacterium Enterococcus faecalis DU10 was isolated. This bacteriocin showed a broad spectrum of antibacterial activity against important food-borne pathogens and was purified by size exclusion chromatography followed by reverse-phase high-performance liquid chromatography in a C-18 column. Tricine–SDS PAGE revealed the presence of a band with an estimated molecular mass of 6.3?kDa. The zymogram clearly linked the antimicrobial activity with this band. This result was further confirmed by mass-assisted laser desorption ionization time-of-flight mass spectrometry, since a sharp peak corresponding to 6.313?kDa was detected and the functional groups were revealed by Fourier transform infrared spectroscopy. Bacteriocin DU10 activity was found sensitive to proteinase-K and pepsin and partially affected by trypsin and α-chymotrypsin. The activity of bacteriocin DU10 was partially resistant to heat treatments ranging from 30 to 90°C for 30?min. It also withstood a treatment at 121°C for 10?min. Cytotoxicity of bacteriocin DU10 by methyl-thiazolyl-diphenyl-tetrazolium bromide assay showed that the viability of HT-29 and HeLa cells decreased 60?±?0.7% and 43?±?4.8%, respectively, in the presence of 3,200?AU/mL of bacteriocin. The strain withstood 0.3% w/v of bile oxgall and pH 2 affected the bacterial growth between 2 and 4?hr of incubation. Adhesion properties examined with HT-29 cell line showed 69.85% initial population of strain E. faecalis DU10, which was found to be strongly adhered to this cell line. These results conclude bacteriocin DU10 may be used as a potential biopreservative and E. faecalis DU10 may be used as a potential probiont to control Salmonella infections.  相似文献   

2.
Weissella cibaria 110, isolated from the Thai fermented fish product plaa-som, was found to produce a bacteriocin active against some gram-positive bacteria. Bacteriocin activity was not eliminated by exposure to high temperatures or catalase but was destroyed by exposure to the proteolytic enzymes proteinase K and trypsin. The bacteriocin from W. cibaria 110 was purified, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified bacteriocin contained one protein band that was approximately 2.5 kDa in size. Mass spectrometry analysis showed the mass of the peptide to be approximately 3,487.8 Da. N-terminal amino acid sequence analysis was performed, and 27 amino acids were identified. Because it has no similarity to other known bacteriocins, this bacteriocin was defined as a new bacteriocin and termed weissellicin 110.  相似文献   

3.
Screening the collection of natural isolates from semi-hard homemade cheese resulted in isolation and characterization of strain Lactobacillus paracasei subsp. paracasei BGSJ2-8. The strain BGSJ2-8 harbors several important phenotypes, such as bacteriocin production, aggregation phenomenon, and production of proteinase. Bacteriocin SJ was purified by three-step chromatography. Mass spectrometry established molecular mass of the active peptide at 5372 Da. The auto-aggregation phenotype of wild-type (WT) strain was mediated by secreted aggregation-promoting factor (protein of molecular mass > 200 kDa), probably acting in cooperation with other cell surface protein(s). Comparative study of WT and its spontaneous nonaggregating derivative revealed that aggregation factor was responsible for the observed differences in the bacteriocin and proteinase activities. Bacteriocin SJ activity and resistance to different stresses were higher in the presence of aggregating factor. In contrast, proteinase activity was stronger in the nonaggregating derivative.  相似文献   

4.
Pseudomonas sp. strain 166 was isolated from soil samples from Changbai Mountains. A novel bacteriocin PA166 from Pseudomonas sp. 166 was purified using ammonium sulfate, dextran gel chromatography column and Q-Sepharose column chromatography successively. The molecular mass of bacteriocin PA166 was found to be 49.38 kDa by SDS-PAGE and liquid chromatography–mass spectrometry (MS)/MS. Bacteriocin PA166 showed stability at a wide range of pH (2–10), and thermal stability (40, 60, 80 and 100°C). The bacteriocin PA166 antimicrobial activity was slightly inhibited by Ca2+, K+ and Mg2+. The minimum bactericidal concentrations of bacteriocin PA166 against five Pasteurella multocida strains ranged from 2 to 8 μg ml−1. Bacteriocin PA166 showed low cytotoxicity and a higher treatment index (TI = 82.51). Fluorescence spectroscopy indicated that bacteriocin PA166 destroyed the cell membrane to exert antimicrobial activity. In summary, bacteriocin PA166 had strong antibacterial activity, high TI and low toxicity, and hence could serve as a potential clinical therapeutic drug.  相似文献   

5.
A 3-kb region containing the determinant for bacteriocin activity from Rhizobium leguminosarum 248 was isolated and characterized by Tn5 insertional mutagenesis and DNA sequencing. Southern hybridizations showed that this bacteriocin was encoded on the plasmid pRL1JI and that homologous loci were not found in other unrelated R. leguminosarum strains. Tn5 insertional mutagenesis showed that mutations in the C-terminal half of the bacteriocin open reading frame apparently did not abolish bacteriocin activity. Analysis of the deduced amino acid sequence revealed that, similarly to RTX proteins (such as hemolysin and leukotoxin), this protein contains a characteristic nonapeptide repeated up to 18 times within the protein. In addition, a novel 19- to 25-amino-acid motif that occurred every 130 amino acids was detected. Bacteriocin bioactivity was correlated with the presence of a protein of approximately 100 kDa in the culture supernatants, and the bacteriocin bioactivity demonstrated a calcium dependence in both R. leguminosarum and Sinorhizobium meliloti. A mutant of strain 248 unable to produce this bacteriocin was found to have a statistically significant reduction in competitiveness for nodule occupancy compared to two test strains in coinoculation assays. However, this strain was unable to compete any more successfully with a third test strain, 3841, than was wild-type 248.  相似文献   

6.
AIMS: The partial characterization of a bacteriocin produced by a human Lactobacillus delbrueckii isolate with probiotic potential. METHODS AND RESULTS: A bacterocin, UO004, was partially purified by cation exchange followed by a hydrophobic interaction column, biochemically characterized and the N-terminal region sequenced. Bacteriocin UO004 was found to be a hydrophobic, heat-stable polypeptide with an apparent molecular mass of 6 kDa. It was also stable and active over a wide pH range. CONCLUSION: The active compound was proteinaceous, heat-stable, and had a bactericidal (and bacteriolytic) mode of action on a limited number of micro-organisms. Such a narrow spectrum of activity is typical for bacteriocins produced by intestinal Lactobacillus. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriocin UO004 from a probiotic strain is a new compound that does not share any homology with any other known lactic acid bacteria bacteriocin. Furthermore, Lact. delbrueckii is regarded as a suitable starter for the production of fermented milks.  相似文献   

7.
A 3-kb region containing the determinant for bacteriocin activity from Rhizobium leguminosarum 248 was isolated and characterized by Tn5 insertional mutagenesis and DNA sequencing. Southern hybridizations showed that this bacteriocin was encoded on the plasmid pRL1JI and that homologous loci were not found in other unrelated R. leguminosarum strains. Tn5 insertional mutagenesis showed that mutations in the C-terminal half of the bacteriocin open reading frame apparently did not abolish bacteriocin activity. Analysis of the deduced amino acid sequence revealed that, similarly to RTX proteins (such as hemolysin and leukotoxin), this protein contains a characteristic nonapeptide repeated up to 18 times within the protein. In addition, a novel 19- to 25-amino-acid motif that occurred every 130 amino acids was detected. Bacteriocin bioactivity was correlated with the presence of a protein of approximately 100 kDa in the culture supernatants, and the bacteriocin bioactivity demonstrated a calcium dependence in both R. leguminosarum and Sinorhizobium meliloti. A mutant of strain 248 unable to produce this bacteriocin was found to have a statistically significant reduction in competitiveness for nodule occupancy compared to two test strains in coinoculation assays. However, this strain was unable to compete any more successfully with a third test strain, 3841, than was wild-type 248.  相似文献   

8.
Weissella cibaria 110, isolated from the Thai fermented fish product plaa-som, was found to produce a bacteriocin active against some gram-positive bacteria. Bacteriocin activity was not eliminated by exposure to high temperatures or catalase but was destroyed by exposure to the proteolytic enzymes proteinase K and trypsin. The bacteriocin from W. cibaria 110 was purified, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified bacteriocin contained one protein band that was approximately 2.5 kDa in size. Mass spectrometry analysis showed the mass of the peptide to be approximately 3,487.8 Da. N-terminal amino acid sequence analysis was performed, and 27 amino acids were identified. Because it has no similarity to other known bacteriocins, this bacteriocin was defined as a new bacteriocin and termed weissellicin 110.  相似文献   

9.
Benoit  V.  Mathis  R.  Lefebvre  G. 《Current microbiology》1994,28(1):53-61
Lactobacillus brevis SB27, isolated from sausages, produced an antimicrobial substance active against numerous strains of heterofermentative lactobacilli and against some strains of pediococci andBacillus. The antibacterial agent was shown to be heat stable, resistant over a wide pH range, and sensitive to proteolytic enzymes. It was identified as a bacteriocin and termed brevicin 27. Dialysis and ultrafiltration suggested an apparent molecular weight between 10 and 30 kDa for the crude inhibitory molecule. Brevicin 27 exhibited a hydrophobic character. A partially purified preparation, resulting from ammonium sulfate precipitation and cation exchange chromatography, permitted confirmation of some characteristics of the bacteriocin, previously established with the crude extract. After treatment of the original brevicin 27-producing strain with novobiocin, a nonproducing mutant was obtained. This mutant was sensitive to brevicin 27, and its plasmid profile revealed the loss of a plasmid of about 3 MDa.  相似文献   

10.
Bacteriocins are antibacterial, proteinaceous substances that mediate microbial dynamics. Bacteriocin production is a highly disseminated property among all major lineages of bacteria, including Shigella. In this paper, we addressed the purification and characterisation of a bacteriocin produced by a Shigella sonnei strain (SS9) isolated from a child with acute diarrhoea. The substance was purified through ammonium-sulphate precipitation and sequential steps of chromatography. The intracellular fraction obtained at 75% ammonium sulphate maintained activity following exposure to pH values from 1-11 and storage at -80ºC for more than two years and was inactivated by high temperatures and proteases. The molecular mass of the purified bacteriocin was determined by mass spectrometry to be 18.56 kDa. The N-terminal sequence of the bacteriocin did not match any other antibacterial proteins described. A putative new bacteriocin produced by S. sonnei has been detected. This bacteriocin may represent a newly described protein or a previously described protein with a newly detected function. Considering that SS9 expresses antagonism against other diarrhoeagenic bacteria, the bacteriocin may contribute to S. sonnei virulence and is potentially applicable to either preventing or controlling diarrhoeal disease.  相似文献   

11.
Enterococcus faecium T8, isolated from vaginal secretions of children with human immunodeficiency virus, produces a class IIa sec-dependent bacteriocin that is structurally different from three other class IIa sec-dependent bacteriocins, i.e., enterocin P and an enterocin P-like bacteriocin, produced by Enterococcus faecium, and bacteriocin 31, produced by Enterococcus faecalis, and from a class III bacteriocin produced by E. faecalis. The genes encoding the bacteriocin, immunity protein, mobilization protein, and relaxase nuclease are located on a 7-kb plasmid. Bacteriocin T8 has a molecular mass of 5.1 kDa based on its DNA sequence, similar to the 5.0 kDa recorded for bacteriocin 31 but larger than the 4.6 kDa reported for enterocin P. At the amino acid level, bacteriocin T8 is 69% homologous to bacteriocin 31 and 47% homologous to enterocin P. Bacteriocin T8 is active against E. faecalis isolated from patients diagnosed with vaginosis, against Lactobacillus sakei, and against a Propionibacterium sp. The peptide is heat stable (60 min at 100 degrees C) and remains active in phosphate buffer from pH 4.0 to 10.0. The mode of activity is bactericidal, as determined with E. faecalis.  相似文献   

12.
Lactobacillus fermentum strain L23 produced a small bacteriocin, designated bacteriocin L23, with an estimated molecular mass of < 7000 Da. Isolation, purification, and partial characterization of bacteriocin L23 are described. It displayed a wide inhibitory spectrum including both Gram-negative and Gram-positive pathogenic strains and two species of Candida. The antibacterial activity of cell-free culture supernatant fluid was not affected by catalase or urease but was abolished by the proteolytic enzymes trypsin and protease VI. Bacteriocin L23 was heat stable (60 min at 100°C) and showed inhibitory activity over a wide pH range (4.0 to 7.0). The proteinaceous compound was isolated from cell-free culture supernatant fluid and purified. Crude bacteriocin sample was prepared by a process of ammonium sulfate precipitation, gel filtration, thin-layer chromatography, bioautography, and reversed-phase HPLC.  相似文献   

13.
Lactobacillus plantarum BM‐1 isolated from a traditionally fermented Chinese meat product was found to produce a novel bacteriocin that is active against a wide range of gram‐positive and gram‐negative bacteria. Production of the bacteriocin BM‐1 started early in the exponential phase and its maximum activity (5120 AU/mL) was recorded early during the stationary phase (16 hr). Bacteriocin BM‐1 is sensitive to proteolytic enzymes but stable in the pH range of 2.0–10.0 and heat‐resistant (15 min at 121°C). This bacteriocin was purified through pH‐mediated cell adsorption–desorption and cation‐exchange chromatography on an SP Sepharose Fast Flow column. The molecular weight of the purified bacteriocin BM‐1 was determined to be 4638.142 Da by electrospray ionization Fourier transform mass spectrometry. Furthermore, the N‐terminal amino acid sequence was obtained through automated Edman degradation and found to comprise the following 15 amino acid residues: H2N‐Lys‐Tyr‐Tyr‐Gly‐Asn‐Gly‐Val‐Tyr‐Val‐Gly‐Lys‐His‐Ser‐Cys‐Ser. Comparison of this sequence with that of other bacteriocins revealed that bacteriocin BM‐1 contains the consensus YGNGV amino acid motif near the N‐terminus. Based on its physicochemical characteristics, molecular weight, and N‐terminal amino acid sequence, plantaricin BM‐1 is a novel class IIa bacteriocin.  相似文献   

14.
BLIS 213, is a bacteriocin-like inhibitory substance produced by Carnobacterium piscicola 213. It is active against Carnobacterium, Enterococcus and Listeria spp. No activity was observed against tested Lactobacillus, Lactococcus, Leuconostoc and Pediococcus strains, nor against Gram-negative bacteria. The BLIS 213 activity was inactivated by several proteolytic enzymes. It was heat resistant (121°C for 20 min), and stable over a pH range of 2–8. Activity was determined by a dilution micromethod; it was increased after SDS treatment. A mutant strain which lacks bacteriocin production was isolated and designated as Carnobacterium piscicola 213a. It had the same phenotypic and biochemical properties as the parent strain, and was not sensitive to bacteriocin activity. The apparent molecular weight of the bacteriocin in the crude extract was greater than 10 kDa. It was about 6 kDa after SDS-PAGE of a partially purified bacteriocin by adsorption on producer cells. The isoelectric point of the BLIS 213 was around 9.3. Received 21 January 1997/ Accepted in revised form 25 April 1997  相似文献   

15.
A bacteriocin producing strain Lactobacillus brevis UN isolated from Dulliachar—a salted pickle and identified by biochemical and molecular methods. L. brevis UN was found to produce bacteriocin with broad spectrum activity against spoilage causing/food borne pathogens viz. L. monocytogenes, C. perfringens, S. aureus, L. mesenteroides, L. plantarum and B. cereus. Bacteriocin production was optimized through classical one variable at a time method. The isolate showed maximum bacteriocin production at early stationary phase, pH 4.0, temperature 35 °C and with an inoculum size of 1.5 OD @ 10 %. Bacteriocin produced by L. brevis UN was purified to homogeneity by single step gel exclusion chromatography and was most active at pH 6.0 and 7.0, stable up to 100 °C and was proteinaceous in nature. The results of NMR revealed the presence of proline, glutamic acid, aspartic acid, leucine, isoleucine and serine in its peptide structure. PCR amplification analysis determined that bacteriocin encoded gene in L. brevis UN was plasmid bound.  相似文献   

16.
T V Riley  B J Mee 《Microbios》1985,43(173):115-133
Three different bacteriocins produced by strains of Bacteroides fragilis were compared in terms of their production kinetics, physico-chemical nature, and action on macromolecular synthesis in a common indicator strain. Bacteriocin 78/438 was produced during the logarithmic growth phase, was thermolabile and stable between pH 5 and 9. It was susceptible to trypsin and pepsin, and affected DNA, RNA and protein syntheses in susceptible cells. Bacteriocin A49 was produced during the stationary growth phase, was thermolabile and stable between pH 7 and 9. This bacteriocin was also susceptible to trypsin and pepsin, but only RNA synthesis was affected in the indicator strain. Bacteriocin A55 differed markedly from both 78/438 and A49, and was found to be predominantly cell-bound, resistant to inactivation by high temperatures and stable over a wide pH range of 2 to 12. It was susceptible to trypsin but resistant to pepsin. A55 had a delayed effect on macromolecular synthesis with DNA synthesis being inhibited after 60 min. With all three bacteriocins, killing of the indicator strain followed single hit kinetics with the interaction of bacteriocin and target cell occurring in two stages. Killing by bacteriocin A55 was much slower than the other two and this may be related to its effect on macromolecular synthesis. The killing action of all three bacteriocins was dependent on the growth phase of the susceptible cells.  相似文献   

17.
Bacteriocin-producing Pseudomonas putida strain FStm2 isolated from shark showed broad range of antibacterial activity against all pathogens tested except Bacillus subtilis ATCC11774, MRSA N32064, Proteus mirabilis ATCC12453, Enterococcus faecalis ATCC14506, Salmonella typhimurium ATCC51312, Salmonella mutan ATCC25175, and Aeromonas hydrophila Wbf314. Of the three growth media tested in this study, TSB was observed to support the bacteriocin activity the most. While the highest bacteriocin activity was observed for media supplemented with 1 % NaCl, there was an observed reduction in bacteriocin activity with increasing salt concentration. Although the least bacteriocin activity was observed for marine broth, addition of increasing amounts of tryptone, glucose, or yeast extract increased bacteriocin activity. This was, however, contrary to the effect observed when MgSO4 and MnSO4 were added as supplements. In the presence of α-amylase, lipase, DNase, and RNase, a positive effect on bacteriocin production was observed. Proteinase K strongly inhibited bacteriocin production. Furthermore, the bacteriocins produced were heat stable within the temperature range of 30–70 °C. Bacteriocin activity also was not affected within a wide pH range of 3–9. Exposure to detergents did not inhibit the activity of the bacteriocin at the concentrations tested. Instead, a positive effect on the relative activity of produced bacteriocin was observed as sodium dodecyl sulfate (SDS), EDTA, and Tween 20 at 1 % concentration all improved bacteriocin activity when the cell-free supernatant was tested against Serratia marcescens ATCC 13880. The bacteriocin was purified by ammonium sulfate precipitation and gel filtration on a Superdex-200 column. SDS-PAGE analysis of the partially purified bacteriocin revealed an apparent molecular weight of ~32 kDa.  相似文献   

18.
The role of the class IIa bacteriocin membrane receptor protein remains unclear, and the following two different mechanisms have been proposed: the bacteriocin could interact with the receptor changing it to an open conformation or the receptor might act as an anchor allowing subsequent bacteriocin insertion and membrane disruption. Bacteriocin‐producing cells synthesize an immunity protein that forms an inactive bacteriocin–receptor–immunity complex. To better understand the molecular mechanism of enterocin CRL35, the peptide was expressed as the suicidal probe EtpM‐enterocin CRL35 in Escherichia coli, a naturally insensitive microorganism since it does not express the receptor. When the bacteriocin is anchored to the periplasmic face of the plasma membrane through the bitopic membrane protein, EtpM, E. coli cells depolarize and die. Moreover, co‐expression of the immunity protein prevents the deleterious effect of EtpM‐enterocin CRL35. The binding and anchoring of the bacteriocin to the membrane has demonstrated to be a sufficient condition for its membrane insertion. The final step of membrane disruption by EtpM‐enterocin CRL35 is independent from the receptor, which means that the mannose PTS might not be involved in the pore structure. In addition, the immunity protein can protect even in the absence of the receptor.  相似文献   

19.
Lactococcus lactis subsp. lactis A164 was isolated from Kimchi (Korean traditional fermented vegetables). The bacteriocin produced by strain A164 was active against closely related lactic acid bacteria and some food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Salmonella typhimurium. The antimicrobial spectrum was nearly identical to that of nisin. Bacteriocin activity was not destroyed by exposure to elevated temperatures at low pH values, but the activity was lost at high pH values. This bacteriocin was inactivated by pronase E and alpha, beta-chymotrypsin, but not by trypsin, pepsin, and alpha-amylase. Cultures of L. lactis subsp. lactis A164 maintained at a constant pH of 6.0 exhibited maximum production of the bacteriocin. It was purified to homogeneity by ammonium sulphate precipitation, sequential ion exchange chromatography, and ultrafiltration. Tricine-SDS-PAGE of purified bacteriocin gave the same molecular weight of 3.5 kDa as that of nisin. The gene encoding this bacteriocin was amplified by PCR with nisin gene-specific primers and sequenced. It showed identical sequences to the nisin gene. These results indicate that bacteriocin produced by Lactococcus lactis A164 is a nisin-like bacteriocin.  相似文献   

20.
Enterobacter cloacae DF 13 produces a bacteriocin with killing action onKlebsiella edwardsii var.edwardsii. The degree of sensitivity to the bacteriocin depended on the medium in which the cells were grown and on the bacteriocin concentration used. An excess of bacteriocin (60 K.U./ml) arrested growth in about 60 min. Growth of bacteriocin-treated cultures could be restored by trypsin treatment. In Brain Heart Infusion cultures trypsin rapidly restored bacterial growth even after 60 min of bacteriocin treatment. However, in broth cultures and minimal medium cultures treated with bacteriocin for only 10 min, it took 4 to 5 hr before growth started again. The bacteriocin had little effect on resting cells. Broth-grown cells had about 280 and BHI-grown cells about 340 bacteriocin receptor sites. Bacteriocin DF 13 strongly inhibited protein synthesis after a lag-time of 15 to 60 min depending on the concentration used but had no effect on RNA and DNA synthesis nor on respiration and fermentation. The bacteriocin stimulated RNA synthesis in a leucine-deficient mutant after leucine deprivation.We are grateful to W. Schipper and H. R. de Jonge for assistence in some experiments. The investigations were supported (in part) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号