首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A M Allan  L D Baier  X Zhang 《Life sciences》1992,51(12):931-943
Withdrawal seizure prone (WSP) and withdrawal seizure resistant (WSR) mice were treated with 5 mg/kg lorazepam for 7 days via implanted osmotic mini pumps. Following chronic drug treatment, brains were assayed for GABA-mediated chloride flux (GABA-Cl-). Under control (drug naive) conditions, brain membranes prepared from WSP and WSR lines did not differ in flunitrazepam or ethanol stimulation of GABA-mediated 36Cl- uptake, but the WSP lines were more sensitive to inhibition of 36Cl- flux by the inverse agonist, FG-7142. Membranes from lorazepam tolerant WSP and WSR mice were resistant to flunitrazepam- and ethanol-stimulation of GABA-Cl-. Withdrawal from chronic treatment, by an acute injection with the benzodiazepine antagonist RO15-1788, returned flunitrazepam stimulation of GABA-Cl- to near control levels in WSR membranes but not in WSP membranes and restored ethanol modulation of the channel to control levels in both lines. Inhibition of chloride flux by the benzodiazepine partial inverse agonist, FG-7142 was greater in membranes from WSP mice compared with WSR mice. Tolerance to lorazepam increased sensitivity of the WSR membranes to FG-7142 without altering the response in the WSP line. Again, withdrawal restored the Cl- flux response to FG-7142 back to near control levels. Lorazepam tolerance lowered [3H]-flunitrazepam binding affinity slightly only in the WSR strain with no change in binding number. Withdrawal from chronic lorazepam treatment produced no significant change in binding affinity or number. The initial genotypic differences in benzodiazepine inverse agonist sensitivity, may be related to the selection for withdrawal seizure severity. Chronic administration of lorazepam reduces the coupling between the benzodiazepine agonist site and the chloride channel and concomitantly increases coupling between the channel and the inverse agonist site, while withdrawal resets the receptor coupling back to control response levels. However, for the WSP line, this drug environment dependent shift in channel coupling bias appears to be deficient compared with the WSR line.  相似文献   

2.
We report an ongoing within-family selective breeding project for the severity of handling-induced withdrawal seizures in mice made physically dependent on ethanol by inhalation. Two Withdrawal Seizure Prone (WSP) and two Withdrawal Seizure Resistant (WSR) lines have been subjected to five generations of selection, and two control (WSC) lines are maintained. Each WSP line had more severe and each WSR line had less severe withdrawal convulsions than its respective WSC line. Differences relative to control lines were more pronounced in the WSP lines and were not due to differences in effective dose of ethanol. Heritabilities were higher in the WSP lines than in the WSR lines. These lines will be useful for studying physiological determinants of ethanol dependence and withdrawal.  相似文献   

3.
Specific ethanol withdrawal seizures in genetically selected mice   总被引:2,自引:0,他引:2  
We are selectively breeding mice prone (WSP) and resistant (WSR) to ethanol withdrawal seizures assessed by handling induced convulsions (HIC). The possibility that differences between the lines in HIC scores are a result of differences in general CNS excitability not specific to ethanol withdrawal was examined. Using treatments which produce generalized seizures (electroconvulsive shock, strychnine, and flurothyl) and gamma amino-butyric acid (GABA) antagonists (picrotoxin, bicuculline, and pentylentetrazol), the ED50 for seizures was determined in the selected lines. In addition, the sensitivity of WSP and WSR mice to the anticonvulsant actions of ethanol against each treatment was determined. Neither the convulsant amperage 50 (CA50) for ECS nor the ED50 for any drug treatment differed for the selected lines. When ethanol (1.5 g/kg) was administered prior to ECS, there was a dramatic differential suppression of ECS in the lines: the CA50 of WSR mice was elevated 5-fold, whereas the CA50 of WSP mice increased only two fold. Ethanol pretreatment also elevated the ED50 for strychnine and flurothyl in WSR mice significantly more than WSP mice, but the line difference was smaller than for the anticonvulsant effect against ECS. The ED50s for the GABA antagonists were not different between the WSR and WSP lines after ethanol pretreatment. We conclude that genetic selection is producing lines of mice that differ specifically in the degree of seizure severity caused by withdrawal from ethanol physical dependence and not in generalized CNS excitability. An increased sensitivity to the anticonvulsant effects of ethanol against some convulsant treatments has appeared as a correlated response to selection in the WSR line.  相似文献   

4.
Genetic selection based on severity of withdrawal seizures following inhalation of ethanol vapor has produced two lines of mice, WSR (withdrawal seizure resistant) and WSP (withdrawal seizure prone), that differ markedly in withdrawal signs. In the present study, we report that these mice also differed in the severity of withdrawal seizures following consumption of an ethanol-containing liquid diet but did not differ in ethanol intake. In contrast to ethanol withdrawal seizures, the lines displayed similar sensitivity to electrical- or pentylenetetrazole-induced seizures. These results suggest that the lines differ in the development of physical dependence on ethanol rather than seizure sensitivity per se. Because decreased synaptic membrane fluidity has been associated with ethanol dependence, we used fluorescence polarization of diphenylhexatriene and trimethylammonium-diphenylhexatriene to evaluate membrane fluidity in WSP and WSR mice fed lab chow, an ethanol-containing liquid diet, or an isocaloric sucrose-containing liquid diet. Fluidity of brain synaptic membranes was identical for WSP and WSR mice fed lab chow. The control liquid diet did not alter membrane fluidity, and the ethanol diet decreased fluidity equally for WSP and WSR mice. Thus, the genetic difference in development of ethanol dependence found in these lines was not reflected in the physical properties of brain membranes.  相似文献   

5.
6.
Twenty generations of selective breeding were used to produce lines (strains) of mice which differ markedly from one another in ethanol physical dependence development as indexed by handling-induced convulsions (HIC) induced by withdrawal from ethanol. These withdrawal seizure prone (WSP) and withdrawal seizure resistant (WSR) selection lines now differ by over 10-fold in HIC scores after equivalent exposure to intoxicating levels of ethanol via inhalation. Since handling-induced convulsions can be readily elicited following withdrawal from nitrous oxide, we sought to determine if the very large differences in ethanol withdrawal-induced HIC bred into these selection lines would generalize to nitrous oxide. Following a 60 min exposure to 75% nitrous oxide (in O2), a greater than 10-fold difference in HIC scores, and a 2-fold difference in tremor incidence was seen upon withdrawal in WSP vs. WSR mice. These findings closely parallel those seen with ethanol, and demonstrate that a large degree of commonality exists in the genes and the mechanisms determining these withdrawal signs. HIC elicited by nitrous oxide withdrawal were readily suppressed by ethanol, and HIC elicited by ethanol withdrawal were promptly suppressed by 75% nitrous oxide in WSP mice. Nitrous oxide also suppressed HIC and tremor associated with nitrous oxide withdrawal.  相似文献   

7.
Hexokinase redistribution in vivo   总被引:1,自引:0,他引:1  
Heterogenous stock mice in addition to mice selectively bred to maximally differ in their severity of alcohol withdrawal seizures (withdrawal seizure-resistant (WSR) and withdrawal seizure-prone (WSP] were used to provide evidence in favor of the importance of the rapidly changing distribution of brain hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) (HK). An ischemic response at 15, 30, 60 and 120 s after killing showed a decreasing cerebellar cytosolic HK concentration of 31%, 15%, 14% and 10% while the cerebral concentrations were 23%, 13%, 13% and 14%, respectively. WSR and WSP mice given an acute i.p. dose of 4 g/kg of alcohol showed opposite HK responses. Cytosolic HK in WSR mice decreased 18.5%, while WSP mice showed an increase of 20.3% over paired saline-injected controls. When ischemia was allowed to proceed in WSP mice following an in vivo alcohol treatment, cytosolic HK decreased in parallel to mice not given alcohol. These data suggest that alcohol can cause an HK redistribution in vivo which could play a role in the differing sensitivities of WSR and WSP mice to alcohol related seizures.  相似文献   

8.
Selective breeding was used to produce lines of mice which differ markedly in their genetically-mediated vulnerability to handling-induced convulsions (HIC) associated with the ethanol withdrawal syndrome. These are known as the ethanol withdrawal seizure prone (WSP) and withdrawal seizure resistant (WSR) selection lines. As a result of 5 generations of selective breeding with ethanol, a 3.4-fold difference between WSP and WSR mice was seen in HIC associated with ethanol withdrawal. When diazepam was used as the dependence-producing drug, a 2.4-fold difference emerged. After 6 more generations of selective breeding with ethanol, an approximate 10-fold difference was seen with ethanol, while with diazepam, this difference in HIC scores was also about 10-fold. This close parallel between ethanol and diazepam indicates that physical dependence on both drugs, as indexed by handling-induced convulsions, is extensively codetermined by the same genes, and thus by the same mechanisms, in these selectively-bred mice.  相似文献   

9.
Ethanol (alcohol) withdrawal-induced convulsions are a key index of physical dependence on ethanol and a clinically important consequence of alcohol abuse in humans. In rodent models, severity of withdrawal is strongly influenced by genotype. For example, many studies have reported marked differences in withdrawal severity between the WSR (Withdrawal Seizure Resistant) and WSP (Withdrawal Seizure Prone) mouse strains selectively bred for over 25 generations to differ in chronic withdrawal severity. Therefore, we used an F2 intercross between the inbred WSP and WSR strains for a genome-wide search for quantitative trait loci (QTLs), which are chromosomal sites containing genes influencing the magnitude of withdrawal. We also used the recently developed HW, RHW (high withdrawal) and LW, RLW (low withdrawal) lines selectively bred for the same trait and in the same manner as the WSP, WSR lines. QTL analysis was then used to dissect the continuous trait distribution of withdrawal severity into component loci, and to map them to broad chromosomal regions by using the Pseudomarker 0.9 and Map Manager QT29b programs. This genome-wide search identified five significant QTLs influencing chronic withdrawal severity on Chromosomes (Chrs) 1 (proximal), 4 (mid), 8 (mid), 11 (proximal), and 14 (mid), plus significant interactions (epistasis) between loci on Chr 11 with 13, 4 with 8, and 8 with 14.  相似文献   

10.
11.
To determine whether genetic differences in development of ethanol dependence are related to changes in gamma-aminobutyric acidA (GABAA) receptor function, we measured 36Cl- uptake by brain cortical membrane vesicles from withdrawal seizure prone and withdrawal seizure resistant (WSP/WSR) mice treated chronically with ethanol. Muscimol-stimulated chloride flux was not different between WSP and WSR mice before or after ethanol treatment. Also, augmentation of muscimol action by flunitrazepam or inhibition of muscimol action by the inverse agonists Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a]- [1,4]benzodiazepine-3-carboxylate) and methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) was not different for ethanol-naive WSP and WSR mice. However, chronic ethanol administration enhanced the inhibitory actions of DMCM and Ro 15-4513 on membranes from WSP but not WSR mice. Conversely, chronic ethanol treatment attenuated the action of flunitrazepam on membranes from WSR but not WSP mice, suggesting that the actions of benzodiazepine agonists and inverse agonists are under separate genetic control. These genetic differences in actions of DMCM and Ro 15-4513 indicate that sensitization to benzodiazepine inverse agonists produced by chronic ethanol treatment may be related to development of withdrawal seizures and suggest that differences in the GABA/benzodiazepine receptor complex represent alleles that have segregated during the selection of the WSP/WSR mice.  相似文献   

12.
The neurosteroid allopregnanolone (ALLO) is a potent positive modulator of gamma-aminobutyric acid(A) (GABA(A)) receptors. Earlier work indicates that sensitivity to the anticonvulsant effect of ALLO was enhanced during ethanol (EtOH) withdrawal in rats and in C57BL/6 mice, an inbred strain with mild EtOH withdrawal. In contrast, ALLO sensitivity was reduced during EtOH withdrawal in DBA/2 mice, an inbred strain with severe EtOH withdrawal. Thus, the present studies examined ALLO sensitivity during EtOH withdrawal in another animal model of EtOH withdrawal severity, the Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) selected lines. Male mice were exposed to EtOH vapor or air for 72 h. During peak withdrawal, animals were injected with ALLO [0, 3.2, 5, 10 or 17 mg/kg, intraperitoneally (i.p.)] and tested for their sensitivity to the anticonvulsant effect. In separate studies, potentiation of GABA-stimulated chloride uptake by ALLO (10 nm to 10 microm) was assessed in microsacs prepared from mouse brain mice during peak withdrawal. Notably, WSP mice were cross-tolerant to the anticonvulsant effect of ALLO during EtOH withdrawal (i.e. significant decrease in the efficacy of ALLO) when compared with values in air-exposed mice. In contrast, sensitivity to the anticonvulsant effect of ALLO was unchanged during EtOH withdrawal in the WSR line. Functional sensitivity of GABA(A) receptors to ALLO was significantly decreased during EtOH withdrawal in WSP mice in a manner consistent with the change in behavioral sensitivity to ALLO. These findings suggest that mice selectively bred for differences in EtOH withdrawal severity are differentially sensitive to ALLO during EtOH withdrawal.  相似文献   

13.
Abstract: The effects of ethanol, glycine, and spermidine on the specific binding of [3H]MK-801 were characterized in Triton-treated membranes prepared from the hippocampus and cortex of ethanol-withdrawal seizure-prone (WSP) and -resistant (WSR) mice. Glycine, an allosteric agonist at the NMDA receptor-linked ion channel complex, caused an increase in specific [3H]MK-801 binding to hippocampal membrane preparations. There were no significant differences in EC50 values between the selected lines for the effect of glycine (WSP, 391.7 ± 48.4 nM; WSR, 313.4 ± 77 nM) in the presence of 10 µM NMDA or in the maximal response to the agonist (WSP, 1.75 ± 0.26 pmol/mg of protein; WSR, 1.67 ± 0.22 pmol/mg of protein). The EC50 values for the spermidine-induced increase in [3H]MK-801 binding in membranes from hippocampus in the absence (WSP, 11.7 ± 0.83 µM; WSR, 9.98 ± 1.29 µM) or in the presence of 10 µM glycine and 10 µM NMDA (WSP, 2.1 ± 0.35 µM; WSR, 2.37 ± 0.42 µM) also did not differ. Similar results were obtained in cortical membranes. Saturation isotherms indicated that there was no difference in the density of [3H]MK-801 binding sites, or in their affinity for the radioligand, between the mouse lines. In addition, administration of ethanol by inhalation (24 h) to WSP and WSR mice did not cause an increase in the density of [3H]MK-801 binding sites, and there was no difference in the density or affinity of binding sites between the mouse lines. Withdrawal from ethanol (6 h), which causes an increase in the severity of handling-induced convulsions in WSP mice, also did not alter the binding site density or affinity for radioligand. The results suggest that the characteristics of the NMDA receptor-linked ion channel complex in the tissue preparations described here do not differ in WSP and WSR mice. Thus, genetic differences in seizure susceptibility during ethanol withdrawal can be dissociated from the total density of hippocampal or cortex NMDA receptors under activating conditions.  相似文献   

14.
Potential pleiotropic effects of Mpdz on vulnerability to seizures   总被引:1,自引:0,他引:1  
We previously mapped quantitative trait loci (QTL) responsible for approximately 26% of the genetic variance in acute alcohol and barbiturate (i.e., pentobarbital) withdrawal convulsion liability to a < 1 cM (1.8 Mb) interval of mouse chromosome 4. To date, Mpdz , which encodes the multiple PSD95/DLG/ZO-1 (PDZ) domain protein (MPDZ), is the only gene within the interval shown to have allelic variants that differ in coding sequence and/or expression, making it a strong candidate gene for the QTL. Previous work indicates that Mpdz haplotypes in standard mouse strains encode distinct protein variants (MPDZ1-3), and that MPDZ status is genetically correlated with severity of withdrawal from alcohol and pentobarbital. Here, we report that MPDZ status cosegregates with withdrawal convulsion severity in lines of mice selectively bred for phenotypic differences in severity of acute withdrawal from alcohol [i.e., High Alcohol Withdrawal (HAW) and Low Alcohol Withdrawal (LAW) lines] or pentobarbital [High Pentobarbital Withdrawal (HPW) and Low Pentobarbital Withdrawal (LPW) lines]. These analyses confirm that MPDZ status is associated with severity of alcohol and pentobarbital withdrawal convulsions. Using a panel of standard inbred strains of mice, we assessed the association between MPDZ status with seizures induced by nine chemiconvulsants. Our results show that MPDZ status is genetically correlated with seizure sensitivity to pentylenetetrazol, kainate and other chemiconvulsants. Our results provide evidence that Mpdz may have pleiotropic effects on multiple seizure phenotypes, including seizures associated with withdrawal from two classes of central nervous system (CNS) depressants and sensitivity to specific chemiconvulsants that affect glutaminergic and GABAergic neurotransmission.  相似文献   

15.
Kappa receptor mediated opioid dependence in rhesus monkeys   总被引:1,自引:0,他引:1  
D E Gmerek  J H Woods 《Life sciences》1986,39(11):987-992
The kappa receptor-selective agonist U-50, 488 was administered chronically to rhesus monkeys. Tolerance developed to the overt behavioral effects of U-50,488 without cross-tolerance to morphine. Withdrawal behaviors produced by deprivation, naloxone or quadazocine administration in U-50, 488-dependent monkeys consisted of hyperactivity, excessive grooming, and yawning. The syndrome was suppressed in a dose-related manner by a kappa agonist, ethylketazocine, but not by doses of morphine that suppressed its own withdrawal. The mu-selective antagonist, beta-funaltrexamine, at doses which are active in morphine-dependent monkeys, did not precipitate withdrawal in U50, 488-dependent monkeys. Dependence, which is the result of activity at the kappa receptor, was distinct from morphine dependence.  相似文献   

16.
Chronic ethanol treatment is known to alter the function of the gamma-aminobutyric acidA (GABAA) benzodiazepine receptor complex. To determine if genetic differences in development of ethanol dependence are related to expression of GABAA receptor subunits, we measured whole brain levels of mRNA for the alpha 1, alpha 3, alpha 6, gamma 2s, gamma 2L, and gamma 3 receptor subunits in withdrawal seizure-prone and -resistant (WSP and WSR, respectively) mice fed an ethanol-containing liquid diet or a control diet. Brain poly(A)+ RNA was converted to cDNA and amplified by the polymerase chain reaction using primers conserved among GABAA receptor subunits. Quantification was carried out by densitometric analysis of Southern blots generated using subunit-specific probes. Chronic ethanol treatment decreased the content of alpha 1 mRNA in WSP but not WSR mice and decreased the content of alpha 6 mRNA in WSR but not WSP mice. The content of gamma 3 mRNA was increased by chronic ethanol in both lines. In untreated mice, the WSP line had lower levels of alpha 3 and alpha 6 mRNA than the WSR line. Thus, a decrease in the content of alpha 1 mRNA is most clearly linked with development of withdrawal signs, although the amounts of alpha 6 and alpha 3 may also be important in the genetic differences between WSP and WSR mice. In contrast, levels of mRNA for gamma 2S and gamma 2L subunits do not appear to be altered in ethanol dependence.  相似文献   

17.
Pruhs RJ  Peña RT  Quock RM 《Life sciences》2007,80(19):1816-1820
Intracerebroventricular (i.c.v.) administration of the neutral endopeptidase 24.11-inhibitor phosphoramidon evoked a dose-dependent antinociceptive effect in the mouse acetic acid abdominal constriction test. The present study was conducted to identify the opioid receptor subtype(s) that mediate phosphoramidon antinociception in this paradigm. Mice were pretreated with different opioid antagonists prior to being challenged with phosphoramidon, i.c.v., the mu-opioid agonist sufentanil, s.c., or the kappa-opioid agonist U-50,488H, s.c. Naltrexone significantly attenuated phosphoramidon-induced antinociception at an i.c.v. dose that also blocked both sufentanil and U-50,488H. The mu-opioid antagonist beta-funaltrexamine (beta-FNA) blocked phosphoramidon and sufentanil at an i.c.v. dose that did not block U-50,488H. The kappa-opioid antagonist nor-binaltorphimine (nor-BNI) produced dose-related effects. A low dose (10 microg) of nor-BNI had no effect on either phosphoramidon or sufentanil but did reduce U-50,488H antinociception. A higher dose (30 microg) of nor-BNI blocked phosphoramidon, sufentanil, and U-50,488H, suggesting a loss of kappa-opioid receptor selectivity at this dose. These findings suggest that mu- but not kappa-opioid receptors mediate phosphoramidon-induced antinociception in the abdominal constriction test.  相似文献   

18.
Previous report from our laboratory showed that morphine produces a stimulatory effect of hypothalamic noradrenaline (NA) turnover concurrently with enhanced pituitary-adrenal response after its acute injection and during withdrawal. In the present work we have studied the effects of acute and chronic administration of the kappa agonist U-50,488H as well as the influence of U-50,488H withdrawal on the activity of hypothalamic NA and dopamine (DA) neurons and on the activity of hypothalamic-pituitary-adrenal (HPA) axis. A single dose of U-50,488H (15 mg/kg i.p.) significantly increased hypothalamic NA and decreased DA turnover at the time of an enhanced corticosterone release. Rats rendered tolerant to the kappa agonist by administration of U-50,488H twice a day for 4 days showed no changes in corticosterone secretion. Additionally, a decrease in both hypothalamic MHPG (the cerebral NA metabolite) production and NA turnover was observed, whereas DOPAC concentration and DA turnover were enhanced, which indicate the development of tolerance towards the neuronal and endocrine actions of U-50,488H. After naloxone (3 mg/kg s.c.) administration to U-50,488H-tolerant rats, we found neither behavioural signs of physical dependence nor changes in hypothalamic catecholaminergic neurotransmission. In addition, corticosterone secretion was not altered in U-50,488H withdrawn rats. Present data clearly indicate that tolerance develops towards the NA turnover accelerating and DA turnover decreasing effect of U-50,488H. Importantly and by contrast to mu agonists, present results demonstrate that U-50,488H withdrawal produce no changes in hypothalamic catecholamines turnover or in corticosterone release (an index of the hypothalamus-pituitary-adrenal activity), which indicate the absence of neuroendocrine dependence on the kappa agonist. As has been proposed, this would suggest that the mu and the kappa receptor be regulated through different cellular mechanisms, as kappa agonists have a lower proclivity to induce dependence.  相似文献   

19.
The present study was designed to investigate the effect of repeated administration of a selective kappa-opioid receptor agonist (1S-trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride [(-)U-50,488H] on antinociception and G-protein activation induced by mu-opioid receptor agonists in mice. A single s.c. injection of (-)U-50,488H produced a dose-dependent antinociception, and this effect was reversed by a selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Furthermore, a single s.c. pre-treatment with (-)U-50,488H had no effect on the mu-opioid receptor agonist-induced antinociception. In contrast, repeated s.c. administration of (-)U-50,488H resulted in the development of tolerance to (-)U-50,488H-induced antinociception. Under these conditions, we demonstrated here that repeated s.c. injection of (-)U-50,488H significantly enhanced the antinociceptive effect of selective mu-opioid receptor agonists endomorphin-1, endomorphin-2 and [d-Ala2,N-MePhe4,Gly-ol5] enkephalin (DAMGO). Using the guanosine-5'-o-(3-[35S]thio) triphosphate ([35S]GTP gamma S) binding assay, we found that (-)U-50,488H was able to produce a nor-BNI-reversible increase in [35S]GTP gamma S binding to membranes of the mouse thalamus, which has a high level of kappa-opioid receptors. Repeated administration of (-)U-50,488H caused a significant reduction in the (-)U-50,488H-stimulated [35S]GTP gamma S binding in this region, whereas chronic treatment with (-)U-50,488H exhibited the increase in the endomorphin-1-, endomorphin-2- and DAMGO-stimulated [35S]GTP gamma S bindings in membranes of the thalamus and periaqueductal gray. These results suggest that repeated stimulation of kappa-opioid receptors leads to the heterologous up-regulation of mu-opioid receptor functions in the thalamus and periaqueductal gray regions, which may be associated with the supersensitivity of mu-opioid receptor-mediated antinociception.  相似文献   

20.
The effects of a novel kappa-opioid receptor agonist, TRK-820, on the development of physical dependence on morphine were investigated in mice in comparison with those of U-50,488H. A marked body weight loss and several withdrawal signs were observed following naloxone challenge in morphine-dependent mice. Co-injection of TRK-820 (0.003-0.03 mg/kg, s.c.) but not U-50,488H (1-10 mg/kg, s.c.) during chronic morphine treatment dose-dependently suppressed the naloxone-precipitated body weight loss, jumping, wet dog shakes and diarrhea. These results suggest that TRK-820-sensitive kappa-opioid receptor subtypes may play a significant role in modulating the development of physical dependence on morphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号