首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S Lindskog  B Ahrén 《Hormone research》1988,29(5-6):237-240
The effects of the two intrapancreatic peptides galanin and pancreastatin on basal and stimulated insulin and glucagon secretion in the mouse were compared. It was found that at 2 min after intravenous injection of galanin or pancreastatin (4.0 nmol/kg), basal plasma glucagon and glucose levels were slightly elevated. Galanin was more potent than pancreastatin to elevate basal plasma glucagon levels: they increased from 60 +/- 15 to 145 +/- 19 pg/ml (p less than 0.01) after galanin compared to from 35 +/- 5 to 55 +/- 8 pg/ml (p less than 0.05) after pancreastatin. Plasma insulin levels were lowered by galanin (p less than 0.05), but not by pancreastatin. CCK-8 (6.3 nmol/kg) or terbutaline (3.6 mumol/kg) markedly increased the plasma insulin levels. Galanin (4.0 nmol/kg) completely abolished the insulin response to CCK-8 (p less than 0.001), but pancreastatin (4.0 nmol/kg) was without effect. Galanin inhibited the insulin response to terbutaline by approximately 60% (p less than 0.01), but pancreastatin inhibited the insulin response to terbutaline by approximately 35% only (p less than 0.05). CCK-8 and terbutaline did both elevate plasma glucagon levels by moderate potencies: neither pancreastatin nor galanin could affect these responses. Thus, in the mouse, galanin and pancreastatin both inhibit basal and stimulated insulin secretion, and stimulate basal glucagon secretion. Galanin is thereby more potent than pancreastatin. The study also showed that galanin potently inhibits insulin secretion stimulated by the octapeptide of cholecystokin and by the beta 2-adrenoceptor agonist terbutaline, and that pancreastatin inhibits terbutaline-induced insulin secretion.  相似文献   

2.
The effects of galanin on pancreatic exocrine function were examined using rat pancreatic tissues. In anesthetized rats, galanin (40 micrograms/kg/h) decreased amylase secretion stimulated by 2-deoxy glucose (5.8 +/- 0.1 vs. 3.1 +/- 0.1 times basal) and cholecystokinin octapeptide (21.5 +/- 0.6 vs. 16.8 +/- 0.5), while not inhibiting bethanechol-stimulated secretion. In dispersed acini, there was no effect of galanin alone (10(-8) to 10(-13) M) on amylase release, nor did galanin (10(-6) or 10(-8) M) coincubation affect amylase release stimulated by bethanechol (10(-3) to 10(-7) M) or CCK-8 (10(-8) to 10(-13) M). Using pancreatic lobules, coincubation with galanin (10(-6) M) suppressed 75 mM KCl-stimulated amylase secretion and ACh release (10.1 +/- 0.6% vs. 7.3 +/- 0.4%). Veratridine-stimulated (10(-4) M) amylase secretion and ACh release (12.4 +/- 1.7% vs. 8.5 +/- 0.7%) were similarly diminished.  相似文献   

3.
Effects of synthetic rat pancreastatin C-terminal fragment on both exocrine and endocrine pancreatic functions were examined in rats, in vivo and in vitro. Pancreastatin (20, 100 pmol, 1 nmol/kg/h) significantly inhibited CCK-8-stimulated pancreatic juice flow and protein output in a dose-related manner, in vivo. The inhibitory effect on bicarbonate output was not statistically significant. Pancreastatin did not significantly inhibit basal pancreatic secretions in vivo, and did not inhibit amylase release from the dispersed acini, in vitro. Insulin release stimulated by intragastric administration of glucose (5 g/kg) was significantly inhibited by pancreastatin (1 nmol/kg/h), in vivo. Plasma glucose concentrations were increased by pancreastatin infusion, but the increase was not statistically significant. Furthermore, pancreastatin inhibited insulin release from isolated islets, in vitro. Synthetic rat C-terminal pancreastatin fragment has bioactivities on both exocrine and endocrine pancreatic functions in rats.  相似文献   

4.
Recent synthesis of specific, potent bombesin receptor antagonists allows examination of the role of bombesin-like peptides in physiological processes in vivo. We characterized effects of [D-Phe6]bombesin(6-13)-methyl-ester (BME) on pancreatic enzyme secretion stimulated by the C-terminal decapeptide of gastrin releasing peptide (GRP-10), food intake, and diversion of bile-pancreatic juice in rats. In isolated pancreatic acini, BME had no agonistic effects on amylase secretion but competitively inhibited responses to GRP-10, yielding a pA2 value of 8.89 +/- 0.19. In conscious rats with gastric, jugular vein, bile-pancreatic, and duodenal cannulas, basal enzyme secretion (bile-pancreatic juice recirculated) was not affected by the antagonist. Maximal amylase response to GRP-10 (0.5 nmol/kg/h) was inhibited dose dependently by BME, reaching 97% inhibition at a dose of 400 nmol/kg/h. The dose response curve of amylase secretion stimulated by GRP-10 was shifted to the right by 40 nmol/kg/h BME, but maximal amylase response was unaltered, suggesting competitive inhibition in vivo. Liquid food intake and bile-pancreatic juice diversion caused substantial increases in amylase secretion; neither response was altered during administration of 400 pmol/kg/h BME. These results demonstrate that BME is a potent, competitive antagonist of pancreatic responses to bombesin-like peptides in vitro and in vivo. Lack of effect of BME on basal pancreatic secretion or responses to liquid food intake or diversion of bile-pancreatic juice in rats suggests that endogenous bombesin-like peptides do not act either directly or indirectly to mediate these responses.  相似文献   

5.
Z Mungan  A Ertan  R A Hammer  A Arimura 《Peptides》1991,12(3):559-562
A novel neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), which has been isolated from ovine hypothalami, shows 68% homology with vasoactive intestinal peptide (VIP). Since VIP stimulates amylase secretion from the pancreas, we investigated the effect of PACAP and VIP on rat pancreatic exocrine secretion after intravenous injections of PACAP-27, PACAP-38, or VIP at doses of 2.5, 5 or 10 nmol/kg. Results showed: 1) Bolus injection of PACAP stimulated pancreatic amylase and protein secretions in a dose-dependent manner; and 2) Stimulation of amylase secretion with 10 nmol/kg of PACAP-27 was greater than that induced with the same dose of VIP or PACAP-38 (p less than 0.05).  相似文献   

6.
The effect of newly discovered pancreastatin on pancreatic secretion stimulated by a diversion of bile-pancreatic juice (BPJ) from the intestine was examined in the conscious rat. Exogenous pancreastatin infusion (20, 100 and 200 pmol/kg.h) inhibited pancreatic protein and fluid outputs during BPJ diversion in a dose-dependent manner. Pancreastatin did not affect plasma cholecystokinin (CCK) concentrations. Pancreastatin (100 pmol/kg.h) inhibited CCK-stimulated pancreatic secretion, but did not inhibit secretin-stimulated pancreatic secretion. Pancreastatin alone, however, did not affect basal pancreatic secretion. In contrast, pancreastatin (10(-10)-10(-7)M) did not suppress CCK-stimulated amylase release from isolated rat pancreatic acini. These results indicate that pancreastatin has an inhibitory action on exocrine function of the pancreas. This action may not be mediated by direct mechanisms and nor via an inhibition of CCK release. It is suggested that pancreastatin may play a role in the regulation of the intestinal phase of exocrine pancreatic secretion.  相似文献   

7.
Effects of synthetic human pancreastatin-52 and human pancreastatin-29 on pancreatic secretion and blood flow were examined in rats and dogs. Synthetic human pancreastatin-52 and human pancreastatin-29 were equally potent in suppressing the release of amylase stimulated by cholecystokinin in rats in vivo. However, neither human pancreastatin-52 nor human pancreastatin-29 altered basal and cholecystokinin-stimulated amylase release from isolated dispersed rat pancreatic acini. In studies in dogs, human pancreastatin-29 suppressed releases of amylase and protein stimulated by cholecystokinin, but did not alter pancreatic blood flow. These results suggest that the inhibitory effects of pancreastatin on pancreatic secretion do not involve a direct action on pancreatic acinar cells nor alteration of pancreatic blood flow. Pancreastatin probably is important in regulating exocrine pancreatic secretions as well as endocrine pancreatic secretions.  相似文献   

8.
Galanin and the endocrine pancreas   总被引:2,自引:0,他引:2  
Galanin is a 29 amino acid peptide, initially isolated from the porcine small intestine. The peptide has been shown to occur in intrapancreatic nerves in close association to the islets. Its effects on islet hormone secretion and its possible mechanisms behind these effects are reviewed. Galanin has been shown to inhibit basal and stimulated insulin secretion both in vivo and in vitro under a variety of experimental conditions. The peptide has also been shown to inhibit somatostatin secretion and the secretion of pancreatic polypeptide (PP). With regard to glucagon secretion, however, results in the literature are not consistent since both stimulatory and inhibitory effects have been reported. A direct interaction with the pancreatic beta-cells has been proposed behind its inhibitory action on insulin secretion, since galanin inhibits insulin secretion from isolated beta-cells from obese, hyperglycaemic, mice. Galanin has thereby also been shown to induce repolarization and to reduce the free Ca2+ concentration, [Ca2+]i. The reduction in [Ca2+]i is probably not due to a direct interference with the voltage-activated Ca2+ channels, since there is no effect of galanin when these channels are opened by depolarization induced by high concentrations of K+. Instead, preliminary studies indicate that galanin activates the K+ channels that are regulated by ATP, in turn inducing a repolarization-induced reduction in [Ca2+]i resulting in reduced insulin secretion. However, the possibility that galanin inhibits the insulin secretory mechanism at a step distal to the regulation of cytoplasmic free Ca2+ concentration should not be overlooked.  相似文献   

9.
Galanin has been shown to be present in the gastrointestinal tract, pancreas and CNS. In the rat stomach, immunohistochemical studies have revealed the presence of galanin in the intrinsic nervous system suggesting a function as putative neurotransmitter or neuromodulator which could affect neighbouring exo- or endocrine cells. Therefore this study was performed to determine the effect of galanin on the secretion of gastrin and somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach. The stomach was perfused via the celiac artery and the venous effluent was collected from the portal vein. The luminal content was kept at pH 2 or 7 Galanin at a concentration of 10(-10), 10(-9) and 10(-8) M inhibited basal gastrin release by 60-70% (60-100 pg/min; p less than 0.05) at luminal pH 7. At luminal pH 2 higher concentrations of galanin (10(-9) and 10(-8) M) decreased basal gastrin secretion by 60-70% (60-100 pg/min; p less than 0.05). This inhibitory effect was also present during infusion of neuromedin-C, a mammalian bombesin-like peptide that stimulates gastrin release. SLI secretion remained unchanged during galanin administration. The inhibitory action of galanin on gastrin secretion was also present during the infusion of tetrodotoxin suggesting that this effect is not mediated via neural pathways. The present data demonstrate that galanin is an inhibitor of basal and stimulated gastrin secretion and has to be considered as an inhibitory neurotransmitter which could participate in the regulation of gastric G-cell function.  相似文献   

10.
Galanin, an ubiquitous neuropeptide, was recently shown to inhibit somatostatin release by the rat islet tumor cell line, Rin-m. By using the clonal pancreatic delta cell line Rin14B, originating from Rin-m cells, we were able to identify the presence of one type of specific galanin-binding site of high affinity (Kd = 1.6 nM; maximal binding capacity = 270 fmol/mg protein) and high specificity for the peptide. Binding of 125I-galanin to these receptors was time-dependent and highly sensitive to guanine nucleotides. Using the cross-linker disuccinimidyl tartrate, covalent linking of the galanin receptor to 125I-galanin in membranes from Rin14B cells, followed by SDS/PAGE analysis of membrane proteins, indicated that the galanin receptor is a protein of 54 kDa. 0.1-100 nM galanin also exerted a marked inhibitory effect on the cAMP-production system under basal conditions, as well as in the presence of the pancreatic peptide glucagon. At a maximal dose, galanin induces a 90-100% decrease of basal and glucagon-stimulated cAMP production levels, with a median inhibition concentration (IC50) of 3 nM galanin. The direct inhibitory effect of galanin on the adenylate cyclase activity in Rin14B cell membranes was also demonstrated (IC50 = 3 nM galanin). The inhibitory effect of galanin on the basal and glucagon-stimulated cAMP production in Rin14B cells was reversed by pertussis toxin. The toxin was also shown to specifically ADP-ribosylate a protein of 41 kDa in membranes from Rin14B cells. Taken together, these data show that the pancreatic delta cell line Rin14B expresses high affinity galanin receptors negatively coupled to a pertussis-toxin-sensitive cAMP-production system.  相似文献   

11.
It has been suggested that mammalian gastrin-releasing peptide (GRP) and bombesin (BBS) might inhibit gastric secretion by a central nervous system action. The present investigations were intended to define the gastric effect and to look for an effect on the exocrine pancreas. Wistar male rats were provided with a chronic cannula allowing cerebroventricular injections in the 3rd ventricle, and with chronic gastric and/or pancreatic fistulas allowing the collection of gastric and/or pancreatic secretions in conscious animals. Both basal secretions were studied. Gastric secretion was stimulated with a 75 mg/kg s.c. injection of 2-deoxyglucose (2-dGlc). The dose range of bombesin was 0.01–1 μg (6–600 pmol) and GRP was 0.01–10 μg/rat (3.5 pmol to 3.5 nmol). A significant dose related decrease of basal gastric secretion was observed with the two peptides. The gastric acid response to 2-dGlc was inhibited by both peptides in a dose-related fashion and the reduction of gastric acid output mainly resulted from a decrease in the volume of gastric juice. The exocrine pancreatic secretion was also decreased by 30–55% after GRP but the BBS inhibitory effect was poorly dose-related. No significant difference was found after removal of gastric secretion, indicating that most of the pancreatic inhibition was independent of gastric secretion.  相似文献   

12.
This study was designed to compare, on a molar basis, the effect of chronic bombesin, gastrin-releasing peptide (GRP) and caerulein on pancreatic growth in the rat. These 3 peptides were administered s.c. 3 times daily for 4 days at the following concentrations: 0.036, 0.36, 3.6 and 7.2 nmol/kg of body weight. Bombesin and GRP induced pancreatic growth in a dose-dependent manner from 3.6 nmol/kg. This growth was characterized by an increase in pancreatic weight, its protein and RNA contents but not in DNA content suggesting cellular hypertrophy. Caerulein exerted a biphasic effect on pancreatic growth, inducing cellular hypertrophy at low doses since 0.36 nmol/kg and atrophy with the highest dose (7.2 nmol/kg). Bombesin and caerulein (until 3.6 nmol/kg) increased the pancreatic content in chymotrypsin more than in amylase. The 7.2 nmol/kg caerulein treatment depressed all enzyme activities while the same dose of GRP increased pancreatic lipase content. It is concluded that (1) bombesin and GRP are equipotent trophic factors for the pancreas; (2) caerulein is the most potent factor and exerts a biphasic effect on pancreatic growth; (3) pancreatic growth and synthesis and/or secretion of enzymes are not regulated through the same mechanism.  相似文献   

13.
《Journal of Physiology》1997,91(3-5):257-264
The effect of dexloxiglumide, a new potent cholecystokinin (CCK) antagonist, on pancreatic enzyme secretion and growth was studied in the rat. Pancreatic exocrine secretion was studied both in vitro (isolated and perfused pancreatic segments) and in vivo (anaesthetized animals with cannulation of the common bile duct) whereas the trophic effect was investigated after short-term (7 days) administration of the CCK-agonist, caerulein, or camostate (a potent trypsin inhibitor), with or without dexloxiglumide. CCK-8 stimulated amylase release from in vitro pancreatic segments in a concentration-dependent manner. Dexloxiglumide displaced the concentration response curves to CCK-8 to the right without affecting the maximum response, suggesting a competitive antagonism. The Schild plot analysis of data gave a straight line with a slope (0.90±0.36) not significantly different from unity. The calculated pA2 for dexloxiglumide was 6.41 ± 0.38. In vivo experiments confirmed results from in vitro studies since intravenous dexloxiglumide reduced pancreatic exocrine secretion induced by submaximal CCK-8 stimulation (0.5 nmol/kg/h) in a dose-dependent manner, the ID50 being 0.64 mg/kg. Both exogenous and endogenous (released by camostate) CCK increased the weight of the pancreas, the total pancreatic protein and DNA, trypsin and amylase content. Dexloxiglumide (25 mg/kg), administered together with caerulein (1 μg/kg), reduced the peptide-induced increase in pancreatic weight, protein and enzyme content. Similarly, when dexloxiglumide was given together with camostate (200 mg/kg), all the observed changes were reduced by concomitant administration of the antagonist. These results demonstrate the ability of dexloxiglumide to antagonize the effects of CCK on pancreatic secretion and growth, suggesting that this compound is a potent and selective antagonist of CCK-A-receptors in the pancreas.  相似文献   

14.
The effect of synthetic rat amylin (10,100,1000 pmol/l) on glucose (10 mmol/) and arginine (10 mmol/l) -stimulated islet hormone release from the isolated perfused rat pancreas and on amylase release from isolated pancreatic acini was investigated. Amylin stimulated the insulin release during the first (+76%) and the second secretion period (+42%) at 1 nmol/l. The first phase of the glucagon release was inhibited concentration dependently by amylin and completely suppressed during the second phase. Amylin diminished the somatostatin release in a concentration dependent manner. This effect was more pronounced at the first than the second secretion period (1 nmol amylin: 1 phase: -60%, 2.phase: -22%). Amylin was without any effect on basal and CCK stimulated amylase release from isolated rat pancreatic acini. Our data suggest amylin, a secretory product of pancreatic B-cells, as a peptide with approximately strong paracrine effects within the Langerhans islet. Therefore, amylin might be involved in the regulation of glucose homeostasis.  相似文献   

15.
The effects of glucagon-(1-21)-peptide on pancreatic exocrine secretion and plasma glucose levels were studied and compared with those of native glucagon in anesthetized dogs. Intravenous bolus administration of 1 nmol or 10 nmol/kg of glucagon-(1-21)-peptide evoked a significant inhibition of secretin-stimulated pancreatic juice secretion and protein output in a dose-dependent manner, as equimolar doses of glucagon did. Native glucagon induced an immediate and transient increase in pancreatic juice volume, which was followed by a significant inhibition. However, glucagon-(1-21)-peptide showed only the inhibitory action. Glucagon-(1-21)-peptide had no effect on plasma glucose levels even when a dose of 10 nmol/kg was given. The results suggest that the N-terminal amino-acid residues of glucagon play an important role in the inhibition of pancreatic exocrine secretion.  相似文献   

16.
Galanin, a neuropeptide that is widely distributed in the esophageal nerves, is known to exert a neuromodulatory action in the gut. These studies examined the effect of galanin and galanin antagonists on esophageal peristalsis in anesthetized opossums in vivo. Intraluminal esophageal pressures were recorded at 1, 3, 5, 7, and 9 cm above the lower esophageal sphincter. Esophageal peristaltic contractions were induced by swallow and short- (1-s) and long-train (10-s) vagal stimulation (VS). Galanin (1 nmol/kg) inhibited the amplitude of swallow-induced peristaltic contractions and increased peristaltic velocity by enlarging the latency periods in the upper part of the esophagus and reducing them in the lower part. Galinin nearly abolished esophageal contractions caused by short-train VS at 5 Hz and inhibited the contractions at 10 Hz. Galanin increased latency periods induced by short-train VS with little change in the velocity of peristalsis and reduced the amplitude of both A (cholinergic) and B (noncholinergic) contractions due to long-train VS. However, the decrease in amplitude of B contractions was more marked. Galantide (3 nmol/kg) antagonized the inhibitory action of exogenous galanin on esophageal contractions elicited by short-train VS, but by itself galantide had no significant effect on esophageal contractions. In conclusion, exogenous galanin inhibits the amplitude of swallow-induced peristaltic contractions and converts them into nonperistaltic contractions by inhibiting both the cholinergic and noncholinergic components.  相似文献   

17.
The neuropeptide galanin has been reported to have a wide range of biological actions both in the central nervous system and in the gastrointestinal tract. Recent works led to the discovery of selective galanin receptor antagonists including M15 (galanin(1-12)-Pro-substanceP(5-11)-amide), M35 (galanin(1-12)-Pro-bradykinin(2-9)-amide) and C7 (galanin(1-12)-Pro-spantide-amide). These antagonists were shown to competitively inhibit actions of galanin in the central nervous system. The present study was designed to investigate the effect of galanin, M15, M35 and C7 on gastric acid secretion and gastric emptying. Pentagastrin-stimulated gastric acid secretion was inhibited by galanin (0.1-9 nmol x kg(-1) x h(-1), i.v.) in a dose-dependent manner (ID50 = 1.8 +/- 0.3 nmol x kg(-1) x h(-1)). When 9 nmol x kg(-1) x h(-1) galanin infusion was given, inhibition became almost complete. M15, M35 and C7 (1-9 nmol x kg(-1) x h(-1)) did not modify responses of the stomach to galanin, but acted as agonists of galanin on acid secretion. Neither galanin nor its putative antagonists affected the emptying of non-caloric liquids from the stomach. In conclusion, galanin may play an antisecretory role in the regulation of gastric acid secretion but not in the control of gastric emptying of liquids in rats. Its antisecretory action on the stomach is mediated by galanin receptors that are distinct from those in the central nervous system.  相似文献   

18.
The effect of galanin on pancreatic hormone release was studied using isolated perifused rat pancreatic islets. In the presence of 100 mg/dl glucose, 10(-8) mol/L galanin significantly inhibited the basal somatostatin release compared with the perifusion without galanin, whereas there was no significant change in the basal insulin and glucagon release. However, under stimulation of 20 mmol/L arginine, 10(-8) mol/L galanin significantly enhanced glucagon release and suppressed insulin and somatostatin release. These effects disappeared immediately after cessation of galanin infusion. Additionally, 10(-8) mol/L galanin significantly enhanced the first and second phase of glucagon release stimulated by arginine, whereas arginine-stimulated insulin and somatostatin releases were significantly inhibited in both phases. In the cysteamine-treated rat islets, neither enhancement of glucagon release nor suppression of insulin release by galanin was reproducible. These findings indicate two possible explanations. First, it is suggested that the effects of galanin on insulin and glucagon release may be direct and reversed by non-specific effect of cycteamine. Secondly, it seems likely that galanin-enhanced glucagon release may be indirect and in part due to the concomitant somatostatin suppression. Galanin may have an important regulatory function on endocrine pancreas.  相似文献   

19.
Galanin, a 29 amino acid neuropeptide, was recently isolated from pig intestine. We studied the localization, nature and effect of galanin in pig pancreas. Galanin immunoreactive nerve fibers were regularly found in the pancreas. A peptide chromatographically similar to synthetic galanin was identified in pancreas extracts. The effect of galanin on the endocrine and exocrine secretion was studied in isolated pancreases, perfused with a synthetic medium containing 3.5, 5 or 8 mmol/l glucose and synthetic galanin (10(-10)-10(-8) mol/l). There was no effect on the basal exocrine secretion. The output of insulin, glucagon, somatostatin and pancreatic polypeptide (PP) was measured in the effluent. There was no effect on PP secretion. At a perfusate glucose concentration of 5 mmol/l, galanin at 10(-9) mol/l increased insulin secretion by 55 +/- 14% (mean +/- S.E.M., n = 5) of basal secretion, and at 10(-8) mol/l by 58 +/- 27% (n = 6). At 8 mmol/l glucose, insulin secretion increased by 25 +/- 10% (n = 6) and 62 +/- 17% (n = 8). At 5 mmol/l glucose glucagon secretion was increased by 15 +/- 3% (n = 5) by galanin at 10(-9) mol/l and by 29 +/- 11% (n = 5) by galanin at 10(-8) mol/l, and at 8 mmol/l glucose by 66 +/- 27% and 41 +/- 25%. Somatostatin secretion was inhibited to 72 +/- 2% (n = 5) of basal secretion by galanin at 10(-9) mol/l and to 65 +/- 7% (n = 7) at galanin at 10(-8) mol/l, both at 5 mmol/l glucose. At 8 mmol/l the figures were 83 +/- 6% and 70 +/- 10%. Insulin secretion in response to square wave increases in glucose concentration from 3.5 to 11 mmol/l (n = 5) increased 2-fold during simultaneous perfusion with galanin (10(-8) mol/l).  相似文献   

20.
Intrinsic reflexes of the lower esophageal sphincter (LES) are mediated by specific arrangements of excitatory and inhibitory nerves. We have previously described an excitatory reflex at the feline LES mediated by a bombesin-like peptide (BN) which causes release of substance P (SP) to directly contract the LES. Galanin is a neurotransmitter in the enteric nervous system which colocalizes in neurons containing vasoactive intestinal peptide (VIP). The aims of this study were to determine: (1) the distribution of galanin at the feline LES; (2) the effect of galanin on basal LES tone; (3) the effect of galanin on agonist-induced LES contractions by BN, SP and bethanechol; and (4) the effect of galanin on LES relaxation induced by esophageal distension and exogenous VIP. Galanin-like immunoreactivity (galanin-LI) was localized in neurons that were widely distributed throughout the LES and adjacent organs. Galanin-LI was most abundant in the circular muscle, muscularis mucosa and myenteric plexus of the LES. In anesthetized cats, intra-arterial galanin had no effect on basal LES pressure in a dose range of 10−11 to 10−6 g/kg. Galanin (5 10−7 g/kg) reduced the LES contractile response to SP by 65 ± 8% (P = 0.0001). This galanin-mediated inhibition of SP was not blocked by tetrodotoxin. Galanin similarly decreased the LES contractile response to BN (63 ± 7%, P = 0.005) and bethanechol (55 ± 17%, P = 0.012). Galanin had no effect on the LES relaxation induced by esophageal distension or exogenous VIP. We conclude: (1) galanin-LI is present in neurons at the feline LES; (2) galanin has no effect on basal sphincter tone, but inhibits contractions of the LES by both direct and indirect agonists; and (3) galanin does not effect the LES relaxation induced by esophageal distension or VIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号