共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteinase activity in mycorrhizal fungi 总被引:9,自引:3,他引:6
2.
Ericoid mycorrhizal fungi (ERM) may specialize in capturing nutrients from their host's litter as a strategy for regulating nutrient cycles in terrestrial ecosystems. In spite of their potential significance, we know little about the structure of ERM fungal communities and the genetic basis of their saprotrophic traits (e.g., genes encoding extracellular enzymes). Rhododendron maximum is a model ERM understory shrub that influences the nutrient cycles of montane hardwood forests in the southern Appalachians (North Carolina, USA). We sampled ERM roots of R. maximum from organic and mineral soil horizons and identified root fungi by amplifying and sequencing internal transcribed spacer (ITS) ribosomal DNA (rDNA) collected from cultures and clones. We observed 71 fungal taxa on ERM roots, including known symbionts Rhizoscyphus ericae and Oidiodendron maius, putative symbionts from the Helotiales, Chaetothyriales, and Sebacinales, ectomycorrhizal symbionts, and saprotrophs. Supporting the idea that ERM fungi are adept saprotrophs, richness of root-fungi was greater in organic than in mineral soil horizons. To study the genetic diversity of oxidative enzymes that contribute to decomposition, we amplified and sequenced a portion of genes encoding multicopper oxidases (MCOs) from ERM ascomycetes. Most fungi possessed multiple copies of MCO sequences with strong similarities to known ferroxidases and laccases. Our findings indicate that R. maximum associates with a taxonomically and ecologically diverse fungal community. The study of MCO gene diversity and expression may be useful for understanding how ERM root fungi regulate the cycling of nutrients between the host plant and the soil environment. 相似文献
3.
《Fungal Ecology》2016
Ericoid mycorrhiza occur only within the plant family Ericaceae, yet are globally widespread and contribute to carbon and nutrient cycling in many habitats where harsh conditions limit decomposition and plant nutrient uptake. An increasingly diverse range of fungi are recognized as ericoid symbionts and patterns in the distribution of ericoid taxa are beginning to emerge across scales. However, the true diversity of ericoid mycorrhizal fungi remains unresolved due to limited sampling from some regions and challenges associated with delineating mycorrhizal taxa from the broader fungal community associated with ericoid plants. Interpreting patterns in the diversity and distributions of ericoid mycorrhizal fungi will ultimately require improved understanding of their functional ecology and functional diversity, which is currently limited to a few well studied species. Fortunately, many ericoid taxa are amenable to experimental manipulation and continued ericoid mycorrhizal research promises to improve general understanding of the ecology and evolution of mycorrhizal symbioses. 相似文献
4.
Proteinase activity in mycorrhizal fungi III. 总被引:4,自引:2,他引:2
5.
Organic nitrogen use by salal ericoid mycorrhizal fungi from northern Vancouver Island and impacts on growth in vitro of Gaultheria shallon 总被引:1,自引:0,他引:1
Salal (Gaultheria shallon) recovers quickly from rhizomes after clear-cut timber harvesting and dominates clearcuts of Tsuga heterophylla and Thuja plicata forests. Thus it contributes to considerable problems in regeneration of these sites in coastal British Columbia, Canada.
Based on what is known about other ericaceous plants, we speculated that mycorrhizal fungi of salal play a vital role in the
growth and dominance of salal by providing access to organic nitrogen. In this study, the ability of four species of fungi
isolated from salal to use different forms of organic nitrogen was tested in pure culture and in association with salal. The
organic forms of nitrogen applied were glutamine (an amino acid), glutathione (a peptide), and bovine serum albumin (BSA,
a protein). The fungi tested were Oidiodendron maius, Acremonium strictum, and two nonsporulating fungi. Inoculated plants always grew better than noninoculated plants regardless of nitrogen source.
Glutamine was used as readily as ammonium nitrogen by all four fungi and the mycorrhizal plants of salal colonized by those
fungi. There was considerable variation between fungus species or the plants inoculated with those fungi in using glutathione
and BSA. Salal inoculated with O. maius grew better on glutathione than BSA, while A. strictum and unknown 1 produced significantly greater yields of salal on BSA. Colonization rates of salal by all four fungi was higher
on glutathione or BSA than on ammonium or glutamine.
Accepted: 19 June 1999 相似文献
6.
《Fungal Ecology》2022
Wetlands provide numerous ecosystem services, and ericaceous plants are important components of these habitats. However, the ecology of fungi associated with ericaceous roots in these habitats is poorly known. To investigate fungi associated with ericaceous roots in wetlands, ericoid mycorrhizal colonization was quantified, and fungal communities were characterized on the roots of Gaultheria hispidula and Kalmia angustifolia along two upland – forested wetland transects in spring and fall. Ericoid mycorrhizal colonization was significantly higher in the wetlands for both plant species. Both upland and wetland habitats supported distinct assemblages of ericaceous root associated fungi including habitat specific members of the genus Serendipita. Habitat was a stronger driver of ericoid mycorrhizal colonization and ericaceous root associated community composition than host or sampling season, with differences related to soil water content, soil nutrient content, or both. Our results indicate that ericaceous plant roots in forested wetlands are heavily colonized by habitat specific symbionts. 相似文献
7.
Ericoid mycorrhizal fungi: some new perspectives on old acquaintances 总被引:11,自引:0,他引:11
Many ericaceous species colonize as pioneer plants substrates ranging from arid sandy soils to moist mor humus, in association with their mycorrhizal fungi. Thanks to the symbiosis with ericoid mycorrhizal fungi, ericaceous plants are also able to grow in highly polluted environments, where metal ions can reach toxic levels in the soil substrate. For a long time this mycorrhizal type has been regarded as an example of a highly specific interaction between plants and fungi. More recent studies have been challenging this view because some ericoid mycorrhizal endophytes seem also able to colonise plants from very distant taxa. A molecular approach has allowed the investigation of genetic diversity and molecular ecology of ericoid mycorrhizal fungi, and has revealed that ericaceous plants can be very promiscuous, with multiple occupancy of their thin roots. The molecular analysis of sterile morphotypes involved in this symbiosis has also led to deeper understanding of the species diversity of ericoid fungi. Genetic polymorphism of ericoid fungi is wider than previously thought, and often increased by the presence of Group I introns in the nuclear small subunit rDNA. 相似文献
8.
9.
10.
11.
《Fungal biology》2021,125(12):1026-1035
The diversity and functionality of ericoid mycorrhizal (ErM) fungi are still being understudied. Members of Chaetothyriomycetidae evolved a specific lifestyle of inhabiting extreme, poor, or toxic environments. Some taxa in this subclass, especially in Chaetothyriales, are also putative ErM taxa, but their mycorrhizal ability is mostly unknown because the members are generally hard to isolate from roots. This study herein focused on eight root isolates and provided their phylogeny and morphology of root colonization. Phylogenetic analysis based on rRNA sequences clarified that the isolated strains were not classified into Chaetothyriales, but in an unnamed lineage in Chaetothyriomycetidae. This lineage also contains rock isolates, bryosymbionts, and a resinicolous species as well as various environmental sequences obtained from soil/root samples. All strains grew extremely slow by mycelia on cornmeal or malt extract agar (2.9–8.5 mm/month) and formed hyphal coils in vital rhizodermal cells of sterile blueberry seedlings in vitro. This study illustrated the presence of a novel putative ErM lineage in Chaetothyriomycetidae. 相似文献
12.
A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes GmFOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA. Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were characterized by SSCP (single stranded conformation polymorphism) and sequencing. All spore genotypes were unique suggesting that no recombination was taking place in the populations. There were no overall differences in the distribution of genotypes in the two fields and identical genotypes could be sampled from both fields. Analysis of gene diversity indicated that Glomus populations are subdivided between plots within each field. There were however, no subdivision between the fields. 相似文献
13.
[目的]以纤维素为唯一碳源,从四川省阿坝自治州黄龙沟的高山低温环境中分离筛选产纤维素酶的耐冷菌,并研究菌株的产酶特征.[方法]根据菌株的ITS序列分析及形态特征,对菌株进行鉴定.利用DNS法测定纤维素酶酶活性.[结果]从四川省阿坝自治州黄龙沟的高山腐殖土中筛选出一株产纤维素酶的耐冷菌HD1031,经鉴定该菌为玫红假裸囊菌(Pseudogymnoascus roseus).该菌可在4℃-25℃生长,最适生长温度为16℃-17℃.该菌在以微晶纤维素和玉米芯粉为碳源、硫酸铵和Tryptone为氮源的培养基中,17℃、160 r/min摇瓶发酵8d后产生纤维素酶,其中内切葡聚糖酶酶活为366.67 U/mL,滤纸酶酶活87.6 U/mL,β-葡萄糖苷酶酶活90.8 U/mL,酶最适反应pH为6.0,最适反应温度为50℃.[结论]筛选获得一株产纤维素酶的耐冷菌HD1031,此菌株所产纤维素酶在20℃-40℃下活性较高,对热敏感,具有低温纤维素酶的特点. 相似文献
14.
15.
Influence of temperature on colonization of spring barleys by vesicular arbuscular mycorrhizal fungi
William E. Gpey 《Plant and Soil》1991,137(2):181-190
The effects of three soil temperatures on growth of spring barleys (Hordeum vulgare L.) and on their root colonization by vesicular arbuscular mycorrhizal (VAM) fungi from agricultural soils in Montana (USA) or Syria at different inoculum concentrations were tested in soil incubators in the greenhouse. The number of mycorrhizal plants as well as the proportion and intensity of roots colonized increased with higher soil temperatures. VAM fungi from Montana, primarily Glomus macrocarpum, were cold tolerant at 11°C while those from Syria, primarily G. hoi, were heat tolerant at 26°C. Inoculum potential of Montana VAM fungi was higher than Syrian VAM fungi in cool soils. Harmal, selected from Syrian barley land races, had the highest colonization by mycorrhizal fungi of the cultivars tested.Journal Series Paper: J-2532 Montana Agricultural Experiment Station. 相似文献
16.
Most vascular plants acquire phosphate from their environment either directly, via the roots, or indirectly, via a symbiotic interaction with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the plant roots where the fungi colonize the cortex of the root to obtain carbon from the plant host, while assisting the plant with acquisition of phosphate and other mineral nutrients from the soil solution. As a first step toward understanding the molecular basis of the symbiosis and phosphate utilization, we have cloned and characterized phosphate transporter genes from the AM fungi Glomus versiforme and Glomus intraradices, and from the roots of a host plant, Medicago truncatula. Expression analyses and localization studies indicate that each of these transporters has a role in phosphate uptake from the soil solution. 相似文献
17.
The majority of phytophagous insects eat very few plant species, yet the ecological and evolutionary forces that have driven such specialism are not entirely understood. The hypothesis that arbuscular mycorrhizal (AM) fungi can determine phytophagous insect specialism, through differential effects on insect growth, was tested using examples from the British flora. In the UK, plant families and species in the family Lamiaceae that are strongly mycorrhizal have higher proportions of specialist insects feeding on them than those that are weakly mycorrhizal. We suggest that AM fungi can affect the composition of insect assemblages on plants and are a hitherto unconsidered factor in the evolution of insect specialism. 相似文献
18.
The fossil record and molecular data show that the evolutionary history of arbuscular mycorrhizal fungi (Glomales) goes back at least to the Ordovician (460 million years ago), coinciding with the colonization of the terrestrial environment by the first land plants. At that time, the land flora only consisted of plants on the bryophytic level. Ribosomal DNA sequences indicate that the diversity within the Glomales on the family and genus level is much higher than previously expected from morphology-based taxonomy. Two deeply divergent lineages were found and described in two new genera, Archaeospora and Paraglomus, each in its own family. Based on a fast-growing number of available DNA sequences, several systems for molecular identification of the Glomales within roots have been designed and tested in the past few years. These detection methods have opened up entirely new perspectives for studying the ecology of arbuscular mycorrhiza. 相似文献
19.
Angela J. Russell Martin I. Bidartondo Brian G. Butterfield 《The New phytologist》2002,156(2):283-295
20.
《Journal of Plant Interactions》2013,8(1):3-13
Abstract Arbuscular mycorrhizal fungi occur throughout the majority of ecosystems supporting host plant nutrition. Recent findings describe the accommodation of the fungus by the root cell as a crucial step for compatibility between the partners. We discuss here the novel aspects of cellular plant-fungus interactions, with a particular attention to the interface compartment, the unique apoplastic space hosting intracellular fungal structures. The main features of arbuscular mycorrhizal colonization are examined and recent information in the field of plant and fungal cell responses during the establishment of the symbiosis is discussed. Differences between the colonization of root epidermal and cortical tissues are discussed, highlighting the growing interest in the role of epidermal cells during the first and decisive steps of the symbiosis. New approaches such as root organ cultures, in vivo observations, GFP tagging and mutant plant analysis are commented on and information from these is compared with that gained from more traditional methods. In particular, the use of plant mutants is depicted as a powerful tool for dissecting and understanding the genetic and cellular aspects of plant/fungus compatibility. Finally, perspectives in this field are outlined through the application of these approaches to the currently unanswered questions. 相似文献