首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthramycin, tomaymycin and sibiromycin are pyrrolo(1,4)benzodiazepine antitumor antibiotics. These compounds react with DNA and other guanine-containing polydeoxynucleotides to form covalently bound antibiotic - polydeoxynucleotide complexes. Experiments utilizing radiolabelled antibiotics have led to the following conclusions: 1. Sibiromycin reacts much faster than either anthramycin or tomaymycin with DNA. 2. At saturation binding the final antibiotic to base ratios for sibiromycin, anthramycin and tomaymycin are 1 : 8.8,1: 12.9, and 1 : 18.2, respectively. 3. No reaction with RNA or protein occurs with the pyrrolo(1,4)benzodiazepine antibiotics. 4. Sibiromycin effectively competes for the same DNA binding sites as anthramycin and tomaymycin; however, there is only partial overlap for the same binding sites between anthramycin and tomaymycin. 5. Whereas all three pyrrolo(1,4)benzodiazepine antibiotic-DNA complexes are relatively stable to alkaline conditions, their stability under acidic conditions increases in the order tomaymycin, anthramycin and sibiromycin. 6. No loss of non-exchangeable hydrogens in either the pyrrol ring or the side chains of these antibiotics occurs upon formation of their complexes with DNA. 7. Unchanged antibiotic has been demonstrated to be released upon acid treatment of the anthramycin-DNA and tomaymycin-DNA complexes. 8. A Schiff base linkage between the antibiotics and DNA has been eliminated. The comparative reactivity of the three antibiotics towards DNA and the stability of their DNA complexes is discussed in relation to their structures. A working hypothesis for the formation of the antibiotic-DNA covalent complexes is proposed based upon the available information.  相似文献   

2.
D J Kaplan  L H Hurley 《Biochemistry》1981,20(26):7572-7580
Anthramycin and mitomycin C (MC) are two DNA reactive drugs, which bind covalently to GC pairs producing different effects on DNA: anthramycin stiffening and MC distorsion. This paper describes experiments in which we have used anthramycin as a probe to sense quantitatively the effects on DNA of MC binding. Saturation binding experiments show that both anthramycin and MC partially inhibit the binding of the other drug to DNA (maximum inhibition by MC and anthramycin, 22.4% and 19.7%, respectively) but by a mechanism other than direct site exclusion. This suggests that MC binds in the major groove of DNA, since anthramycin is known to bind in the minor groove. An abrupt reduction in the binding of anthramycin to DNA-MC complexes occurs between MC binding ratios of 0.030 and 0.035, which parallels and probably results from sudden intensification of a MC-induced DNA conformational change occurring between these binding ratios. Dialysis measurements indicate that anthramycin is very possibly binding at sites distant from MC sites and suggest a clustering of closely bound MC chromophores resulting from possible cooperative binding. S1 nuclease digest experiments demonstrate an initial enhancement of nuclease activity in DNA-MC complexes, the magnitude of which correlates well with the reduction of anthramycin binding, relative to the degree of MC binding. The enhanced nuclease activity in these complexes indicates regions of exposed DNA or helix base distortion which is related to or is the result of conformational change.  相似文献   

3.
Lesion selectivity in blockage of lambda exonuclease by DNA damage.   总被引:4,自引:4,他引:0       下载免费PDF全文
Various kinds of DNA damage block the 3' to 5' exonuclease action of both E. coli exonuclease III and T4 DNA polymerase. This study shows that a variety of DNA damage likewise inhibits DNA digestion by lambda exonuclease, a 5' to 3' exonuclease. The processive degradation of DNA by the enzyme is blocked if the substrate DNA is treated with ultraviolet irradiation, anthramycin, distamycin, or benzo[a]-pyrene diol epoxide. Furthermore, as with the 3' to 5' exonucleases, the enzyme stops at discrete sites which are different for different DNA damaging agents. On the other hand, digestion of treated DNA by lambda exonuclease is only transiently inhibited at guanine residues alkylated with the acridine mustard ICR-170. The enzyme does not bypass benzo[a]-pyrene diol epoxide or anthramycin lesions even after extensive incubation. While both benzo[a]-pyrene diol epoxide and ICR-170 alkylate the guanine N-7 position, only benzo[a]-pyrene diol epoxide also reacts with the guanine N-2 position in the minor groove of DNA. Anthramycin and distamycin bind exclusively to sites in the minor groove of DNA. Thus lambda exonuclease may be particularly sensitive to obstructions in the minor groove of DNA; alternatively, the enzyme may be blocked by some local helix distortion caused by these adducts, but not by alkylation at guanine N-7 sites.  相似文献   

4.
DNA-drug complexes containing various levels of covalently bound mitomycin C (MC) or anthramycin were subjected to the actions of a number of restriction enzymes. While MC presented only a partial block to the actions of a number of these enzymes, anthramycin, at high binding ratios, blocked enzymatic activity very well. The contrast seen in the restriction cleavage of these DNA-drug complexes may be related to the different points of attachment in DNA (minor groove vs. major groove) for these drugs. Although similarities in electrophoretic band patterns exist for both drug complexes, certain differences are indicative of preferences in binding sequences that these drugs may have for DNA. The results show that these sequences do not necessarily lie immediately within the restriction cut sites but may effect the cutting of these sites from a distance. The results also further support anthramycin's potential usage as a selective/reversible blocking agent for recombinant research.  相似文献   

5.
Type I restriction enzymes bind to a specific DNA sequence and subsequently translocate DNA past the complex to reach a non-specific cleavage site. We have examined several potential blocks to DNA translocation, such as positive supercoiling or a Holliday junction, for their ability to trigger DNA cleavage by type I restriction enzymes. Introduction of positive supercoiling into plasmid DNA did not have a significant effect on the rate of DNA cleavage by EcoAI endonuclease nor on the enzyme's ability to select cleavage sites randomly throughout the DNA molecule. Thus, positive supercoiling does not prevent DNA translocation. EcoR124II endonuclease cleaved DNA at Holliday junctions present on both linear and negatively supercoiled substrates. The latter substrate was cleaved by a single enzyme molecule at two sites, one on either side of the junction, consistent with a bi-directional translocation model. Linear DNA molecules with two recognition sites for endonucleases from different type I families were cut between the sites when both enzymes were added simultaneously but not when a single enzyme was added. We propose that type I restriction enzymes can track along a DNA substrate irrespective of its topology and cleave DNA at any barrier that is able to halt the translocation process.  相似文献   

6.
Two-dimensional NMR studies on the anthramycin-d(ATGCAT)2 adduct   总被引:1,自引:0,他引:1  
T R Krugh  D E Graves  M P Stone 《Biochemistry》1989,28(26):9988-9994
Two-dimensional NMR experiments were performed on the adduct of anthramycin with d(ATGCAT)2 to obtain the assignments of the nucleotide base and sugar protons as well as the anthramycin protons. Anthramycin is covalently attached to a guanine 2-amino group, forming the d(ATamGCAT).d(ATGCAT) modified duplex. The anthramycin protons in the minor groove exhibit NOEs to several nucleotide protons. The network of anthramycin-nucleotide NOEs and the measurement of the 10-Hz coupling constant between the anthramycin H11 and H11a protons shows that anthramycin is covalently attached as the S stereoisomer at the anthramycin C11 position with the side chain of anthramycin oriented toward the 5' end of the modified strand. The NOE data show that the anthramycin-modified duplex is in a right-handed conformation with all bases in an anti conformation. Analysis of the J1'-2' coupling constants for the resolved H1' resonances shows that the S-type conformation of the sugars is highly preferred.  相似文献   

7.
The reactions of the EcoRI restriction endonuclease on the covalently closed DNA of plasmid pMB9 were studied in the presence of ethidium bromide. At the concentrations of ethidium bromide tested, which covered the range over which the DNA is changed from negatively to positively supercoiled, the dye caused no alteration to the rate at which this enzyme cleaved the covalently closed DNA to yield the open-circle form, but the rate at which these open circles were cleaved to the linear product could be inhibited. The fluorescence change, caused by ethidium bromide binding with different stoichiometries to covalently closed and open-circle DNA, provided a direct and sensitive signal for monitoring the cleavage of DNA by this enzyme. This method was used for a steady-state kinetic analysis of the reaction catalysed by the EcoRI restriction enzyme. Reaction mechanisms where a complex between DNA and Mg2+ is the substrate for this enzyme were eliminated, and instead DNA and Mg2+ must bind to the enzyme in separate stages. The requisite controls for this fluorimetric assay in both steady-state and transient kinetics studies, and its application to other enzymes that alter the structure of covalently closed DNA, are described.  相似文献   

8.
To date, most spectroscopic studies on mammalian purple acid phosphatases (PAPs) have been performed at a single pH, typically pH 5. The catalytic activity of these enzymes is, however, pH dependent, with optimal pH values of 5.5–6.2 (depending on the form). For example, the pH optimum of PAPs isolated as single polypeptides is around pH 5.5, which is substantially lower that of proteolytically cleaved PAPs (ca. pH 6.2). In addition, the catalytic activity of single polypeptide PAPs at their optimal pH values is four to fivefold lower than that of the proteolytically cleaved enzymes. In order to elucidate the chemical basis for the pH dependence of these enzymes, the spectroscopic properties of both the single polypeptide and proteolytically cleaved forms of recombinant human PAP (recHPAP) and their complexes with inhibitory anions have been examined over the pH range 4 to 8. The EPR spectra of both forms of recHPAP are pH dependent and show the presence of three species: an inactive low pH form (pH<pK a,1), an active form (pK a,1<pH<pK a,2), and an inactive high pH form (pH>pK a,2). The pK a,1 values observed by EPR for the single polypeptide and proteolytically cleaved forms are similar to those previously observed in kinetics studies. The spectroscopic properties of the enzyme–phosphate complex (which should mimic the enzyme–substrate complex), the enzyme–fluoride complex, and the enzyme–fluoride–phosphate complex (which should mimic the ternary enzyme–substrate–hydroxide complex) were also examined. EPR spectra show that phosphate binds to the diiron center of the proteolytically cleaved form of the enzyme, but not to that of the single polypeptide form. EPR spectra also show that fluoride binds only to the low pH form of the enzymes, in which it presumably replaces a coordinated water molecule. The binding of fluoride and phosphate to form a ternary complex appears to be cooperative.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
10.
11.
Confronted with thousands of potential DNA substrates, a site-specific enzyme must restrict itself to the correct DNA sequence. The MuA transposase protein performs site-specific DNA cleavage and joining reactions, resulting in DNA transposition-a specialized form of genetic recombination. To determine how sequence information is used to restrict transposition to the proper DNA sites, we performed kinetic analyses of transposition with DNA substrates containing either wild-type transposon sequences or sequences carrying mutations in specific DNA recognition modules. As expected, mutations near the DNA cleavage site reduce the rate of cleavage; the observed effect is about 10-fold. In contrast, mutations within the MuA recognition sequences do not directly affect the DNA cleavage or joining steps of transposition. It is well established that the recognition sequences are necessary for assembly of stable, multimeric MuA-DNA complexes, and we find that recognition site mutations severely reduce both the extent and the rate of this assembly process. Yet if the MuA-DNA complexes are preassembled, the first-order rate constants for both DNA cleavage and DNA strand transfer (the joining reaction) are unaffected by the mutations. Furthermore, most of the mutant DNA molecules that are cleaved also complete DNA strand transfer. We conclude that the sequence-specific contacts within the recognition sites contribute energetically to complex assembly, but not directly to catalysis. These results contrast with studies of more orthodox enzymes, such as EcoRI and some other type II restriction enzymes. We propose that the strategy employed by MuA may serve as an example for how recombinases and modular restriction enzymes solve the DNA specificity problem, in that they, too, may separate substrate recognition from catalysis.  相似文献   

12.
Specific protection of methylated CpGs in mammalian nuclei   总被引:31,自引:0,他引:31  
F Antequera  D Macleod  A P Bird 《Cell》1989,58(3):509-517
We have compared nuclear accessibility of methylated and nonmethylated sequences using restriction enzymes. MspI, which cuts CpG sites in naked DNA regardless of methylation, cut DNA in intact mouse liver or brain nuclei almost exclusively at CpG islands. Bulk chromatin was not significantly cleaved by MspI but was cleaved extensively by enzymes that do not recognize CpG. Quantitative analysis of limit digests showed that MspI and another methyl-CpG insensitive enzyme, Tth, have a strong bias against cutting methylated sites in these nuclei. Southern analysis confirmed this at three genomic loci. Our results suggest that resistance to nucleases is mediated by factors that are bound specifically to methylated CpGs. MeCP, a protein that binds to methylated DNA in vitro, may be one such factor, since nuclease resistance was significantly reduced in an MeCP-deficient cell line.  相似文献   

13.
Type IIs restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions, typically several base pairs away from the recognition site. These enzymes are generally monomers that transiently associate to form dimers to cleave both strands. Their reactions could involve bridging interactions between two copies of their recognition sequence. To examine this possibility, several type IIs enzymes were tested against substrates with either one or two target sites. Some of the enzymes cleaved the DNA with two target sites at the same rate as that with one site, but most cut their two-site substrate more rapidly than the one-site DNA. In some cases, the two sites were cut sequentially, at rates that were equal to each other but that exceeded the rate on the one-site DNA. In another case, the DNA with two sites was cleaved rapidly at one site, but the residual site was cleaved at a much slower rate. In a further example, the two sites were cleaved concertedly to give directly the final products cut at both sites. Many type IIs enzymes thus interact with two copies of their recognition sequence before cleaving DNA, although via several different mechanisms.  相似文献   

14.
Genomic Denaturing Gradient Gel Electrophoresis (gDGGE) provides an alternative to the standard method of restriction fragment length polymorphism (RFLP) analysis for identifying polymorphic sequence variation in genomic DNA. For gDGGE, genomic DNA is cleaved by restriction enzymes, separated in a polyacrylamide gel containing a gradient of DNA denaturants, and then transferred by electroblotting to nylon membranes. Unlike other applications of DGGE, gDGGE is not limited by the size of the probe and does not require probe sequence information. gDGGE can be used in conjunction with any unique DNA probe. Here we use gDGGE with probes from the proximal region of the long arm of human chromosome 21 to identify polymorphic DNA sequence variation in this segment of the chromosome. Our screening panel consisted of DNA from nine individuals, which was cleaved with five restriction enzymes and submitted to electrophoresis in two denaturing gradient conditions. We detected at least one potential polymorphism for nine of eleven probes that were tested. Two polymorphisms, one at D21S4 and one at D21S90, were characterized in detail. Our study demonstrates that gDGGE is a fast and efficient method for identifying polymorphisms that are useful for genetic linkage analysis.  相似文献   

15.
The artificial restriction DNA cutter (ARCUT) method to cut double-stranded DNA at designated sites has been developed. The strategy at the base of this approach, which does not rely on restriction enzymes, is comprised of two stages: (i) two strands of pseudo-complementary peptide nucleic acid (pcPNA) anneal with DNA to form 'hot spots' for scission, and (ii) the Ce(IV)/EDTA complex acts as catalytic molecular scissors. The scission fragments, obtained by hydrolyzing target phosphodiester linkages, can be connected with foreign DNA using DNA ligase. The location of the scission site and the site-specificity are almost freely tunable, and there is no limitation to the size of DNA substrate. This protocol, which does not include the synthesis of pcPNA strands, takes approximately 10 d to complete. The synthesis and purification of the pcPNA, which are covered by a related protocol by the same authors, takes an additional 7 d, but pcPNA can also be ordered from custom synthesis companies if necessary.  相似文献   

16.
We used a restriction endonuclease/nick translation procedure to study the ability of certain enzymes, known to cleave mouse satellite DNA in solution, to attack satellite DNA in fixed mouse chromosomes. Although AvaII and Sau96I readily attack the mouse major satellite in fixed chromosomes, BstNI and EcoRII do not normally do so, although if the heterochromatin is uncondensed as a result of culture in the presence of 5-azacytidine, BstNI can attack it. No clear evidence was obtained for digestion in situ of the minor satellite of mouse chromosomes by MspI, the only enzyme reported to cleave this satellite. Our results show that the DNA of mouse heterochromatin is not merely not extracted by certain restriction enzymes, but is actually not cleaved by them. Chromatin conformation is therefore shown to be an important factor in determining patterns of digestion of chromosomes by restriction endonucleases.by D. Schweizer  相似文献   

17.
Phasing of nucleosomes in SV40 chromatin reconstituted in vitro   总被引:4,自引:0,他引:4  
  相似文献   

18.
BbvCI cleaves an asymmetric DNA sequence, 5'-CC downward arrow TCAGC-3'/5'-GC downward arrow TGAGG-3', as indicated. While many Type II restriction enzymes consist of identical subunits, BbvCI has two different subunits: R(1), which acts at GC downward arrow TGAGG; and R(2), which acts at CC downward arrow TCAGC. Some mutants of BbvCI with defects in one subunit, either R(1)(-)R(2)(+) or R(1)(+)R(2)(-), cleave only one strand, that attacked by the native subunit. In analytical ultracentrifugation at various concentrations of protein, wild-type and mutant BbvCI enzymes aggregated extensively, but are R(1)R(2) heterodimers at the concentrations used in DNA cleavage reactions. On a plasmid with one recognition site, wild-type BbvCI cleaved both strands before dissociating from the DNA, while the R(1)(-)R(2)(+) and R(1)(+)R(2)(-) mutants acted almost exclusively on their specified strands, albeit at relatively slow rates. During the wild-type reaction, the DNA is cleaved initially in one strand, mainly that targeted by the R(1) subunit. The other strand is then cleaved slowly by R(2) before the enzyme dissociates from the DNA. Hence, the nicked form accumulates as a transient intermediate. This behaviour differs from that of many other restriction enzymes, which cut both strands at equal rates. However, the activities of the R(1)(+) and R(2)(+) subunits in the wild-type enzyme can differ from their activities in the R(1)(+)R(2)(-) and R(1)(-)R(2)(+) mutants. Each active site in BbvCI therefore influences the other.  相似文献   

19.
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.  相似文献   

20.
DNA denatures upon drying after ethanol precipitation.   总被引:11,自引:3,他引:8       下载免费PDF全文
We have observed that ethanol precipitation and subsequent drying of small (less than 400 bp) radiolabelled DNA fragments is able to induce a transition to a form that migrates aberrantly on acrylamide gels. This unusual form has increased sensitivity to S1 nuclease, decreased sensitivity to restriction enzymes, and a concentration dependence for the reversion to the duplex form. Apparently, DNA denatures upon dehydration so that redissolving at low dilution will allow the collapse of DNA fragments into single-stranded hairpin structures. These structures are stable enough at low dilution to prevent complete reannealing of single stranded species. These single stranded species show strong binding to unidentified proteins present in nuclear extracts. This may give rise to misleading interpretations of mobility shift assays, especially if the single-stranded conformers have a similar mobility to the duplex fragment, which can occur in fragments that are 50-100 bp long. Evidence is presented that DNA, in general, denatures upon dehydration, but that hindrances to rotation in the solid state may prevent long fragments from dissociating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号