首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
The availability of nitrogen (N) to plants has a profound impact on carbohydrate and protein metabolism, but little is known about its effect on membrane lipid species. This study examines the changes in galactolipid and phospholipid species in soybean as affected by the availability of N, either supplied to soil or obtained through Bradyrhizobium japonicum nodulation. When N was limited in soil, the content of galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacyglycerol (DGDG), decreased drastically in leaves, while a smaller decrease of DGDG was observed in roots. In both leaves and roots, the overall content of different phospholipid classes was largely unchanged by N limitation, although some individual phospholipid molecular species did display significant changes. Nodulation with Bradyrhizobium of soybean grown in N-deficient soil resulted in a large increase in levels of plastidic lipid classes, MGDG, DGDG, and phosphatidylglycerol, along with smaller increases in non-plastidic phospholipids in leaves. Nodulation also led to higher levels of phospholipids in roots without changes in root levels of MGDG and DGDG. Overall, N availability alters lipid content more in leaves than roots and more in galactolipids than phospholipids. Increased N availability leads to increased galactolipid accumulation in leaves, regardless of whether N is supplied from the soil or symbiotic fixation.  相似文献   

2.
Galactolipids rule in seed plants   总被引:1,自引:0,他引:1  
Chloroplast membranes contain high levels of the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). The isolation of the genes involved in the biosynthesis of MGDG and DGDG, and the identification of galactolipid-deficient Arabidopsis mutants has greatly facilitated the analysis of galactolipid biosynthesis and function. Galactolipids are found in X-ray structures of photosynthetic complexes, suggesting a direct role in photosynthesis. Furthermore, galactolipids can substitute for phospholipids, as suggested by increases in the galactolipid:phospholipid ratio after phosphate deprivation. The ratio of MGDG to DGDG is also crucial for the physical phase of thylakoid membranes and might be regulated.  相似文献   

3.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

4.
The changes of galactolipids (MGDG and DGDG, largely 18:3/18:3), free fatty acids (FFA), and phosphatidylcholine (PC) taking place during senescence of primary barley leaves were analysed employing HPLC and GLC. Upon induction of senescence MGDG and, with some delay, DGDG began to disappear and were largely broken down at the end of the senescence period. A concomitant appearance of a pool of FFA could not be observed. However, PC accumulated during the main period of galactolipid breakdown. This change was due to the marked increase of the 18:3/18:3 molecular species of PC. An inverse correlation between the changes of galactolipids and PC could be established. A hypothesis featuring the conversion of galactolipids via diacylglycerol to PC is presented as the principal route of galactolipid breakdown.  相似文献   

5.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   

6.
This research focuses on galactolipid depletion in blast fungus‐infected rice leaves. Two major galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), from rice leaves were isolated and purified. The chemical structure of MGDG was identified as 1,2‐dilinolenyl‐3‐O‐β‐d ‐galactopyranosyl‐sn‐glycerol, and that of DGDG as 1,2‐dilinolenyl‐3‐O‐[α‐d ‐galactopyranosyl‐(1→6)‐O‐β‐d ‐galactopyranosyl]‐sn‐glycerol. Both the MGDG and DGDG content in the incompatible blast fungus race‐infected leaves decreased more than those in the compatible blast fungus race‐infected leaves during the infection process. Active oxygen species had the ability to peroxygenate and de‐esterify MGDG or DGDG in vitro, suggesting that active oxygen species play an important role in galactolipid depletion during the process of rice blast fungus invasion. Other possible functions of rice galactolipids during disease resistance are also discussed.  相似文献   

7.
Two genes (DGD1 and DGD2) are involved in the synthesis of the chloroplast lipid digalactosyldiacylglycerol (DGDG). The role of DGD2 for galactolipid synthesis was studied by isolating Arabidopsis T-DNA insertional mutant alleles (dgd2-1 and dgd2-2) and generating the double mutant line dgd1 dgd2. Whereas the growth and lipid composition of dgd2 were not affected, only trace amounts of DGDG were found in dgd1 dgd2. The growth and photosynthesis of dgd1 dgd2 were affected more severely compared with those of dgd1, indicating that the residual amount of DGDG in dgd1 is crucial for normal plant development. DGDG synthesis was increased after phosphate deprivation in the wild type, dgd1, and dgd2 but not in dgd1 dgd2. Therefore, DGD1 and DGD2 are involved in DGDG synthesis during phosphate deprivation. DGD2 was localized to the outer side of chloroplast envelope membranes. Like DGD2, heterologously expressed DGD1 uses UDP-galactose for galactosylation. Galactolipid synthesis activity for monogalactosyldiacylglycerol (MGDG), DGDG, and the unusual oligogalactolipids tri- and tetragalactosyldiacylglycerol was detected in isolated chloroplasts of all mutant lines, including dgd1 dgd2. Because dgd1 and dgd2 carry null mutations, an additional, processive galactolipid synthesis activity independent from DGD1 and DGD2 exists in Arabidopsis. This third activity, which is related to the Arabidopsis galactolipid:galactolipid galactosyltransferase, is localized to chloroplast envelope membranes and is capable of synthesizing DGDG from MGDG in the absence of UDP-galactose in vitro, but it does not contribute to net galactolipid synthesis in planta.  相似文献   

8.
Seedlings (2 weeks old) of pepper (Capsicum annum) were grown in nutrient solution with added CdCl(2) (10 or 50 microM) for 7 days. In Cd-treated plants, changes in acyl lipids and fatty acid composition were investigated. Cd particularly lowered the amount of monogalactosyldiacylglycerol (MGDG) and enhanced accumulation of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine and phosphatidylglycerol] in leaves. In contrast, content of PC and galactolipids (MGDG and digalactosyldiacylglycerol) decreased in roots. Fatty acid composition of leaves was also changed by Cd addition to external medium, but no important changes occurred in roots. Levels of leaf polyunsaturated fatty acids, especially 18:3 and 16:3, were reduced. Lipid and fatty acid composition changes in roots are discussed in relation to Cd tolerance in pepper.  相似文献   

9.
The plant galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), are the most abundant lipids in chloroplast membranes, and they constitute the majority of total membrane lipids in plants. MGDG is synthesized by two types of MGDG synthase, type-A (MGD1) and type-B (MGD2, MGD3). These MGDG synthases have distinct roles in Arabidopsis. In photosynthetic organs, Type A MGD is responsible for the bulk of MGDG synthesis, whereas Type B MGD is expressed in non-photosynthetic organs such as roots and flowers and mainly contributes to DGDG accumulation under phosphate deficiency. Similar to MGDG synthesis, DGDG is synthesized by two synthases, DGD1 and DGD2; DGD1 is responsible for the majority of DGDG synthesis, whereas DGD2 makes its main contribution under phosphate deficiency. These galactolipid synthases are regulated by light, plant hormones, redox state, phosphatidic acid levels, and various stress conditions such as drought and nutrient limitation. Maintaining the appropriate ratio of these two galactolipids in chloroplasts is important for stabilizing thylakoid membranes and maximizing the efficiency of photosynthesis. Here we review progress made in the last decade towards a better understanding of the pathways regulating plant galactolipid biosynthesis.  相似文献   

10.
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the most abundant lipids in nature, mainly as important components of plant leaves and chloroplast membranes. Pancreatic lipase-related protein 2 (PLRP2) was previously found to express galactolipase activity, and it is assumed to be the main enzyme involved in the digestion of these common vegetable lipids in the gastrointestinal tract. Most of the previous in vitro studies were however performed with medium chain synthetic galactolipids as substrates. It was shown here that recombinant guinea pig (Cavia porcellus) as well as human PLRP2 hydrolyzed at high rates natural DGDG and MGDG extracted from spinach leaves. Their specific activities were estimated by combining the pH-stat technique, thin layer chromatography coupled to scanning densitometry and gas chromatography. The optimum assay conditions for hydrolysis of these natural long chain galactolipids were investigated and the optimum bile salt to substrate ratio was found to be different from that established with synthetic medium chains MGDG and DGDG. Nevertheless the length of acyl chains and the nature of the galactosyl polar head of the galactolipid did not have major effects on the specific activities of PLRP2, which were found to be very high on both medium chain [1786 ± 100 to 5420 ± 85 U/mg] and long chain [1756 ± 208 to 4167 ± 167 U/mg] galactolipids. Fatty acid composition analysis of natural MGDG, DGDG and their lipolysis products revealed that PLRP2 only hydrolyzed one ester bond at the sn-1 position of galactolipids. PLRP2 might be used to produce lipid and free fatty acid fractions enriched in either 16:3 n − 3 or 18:3 n − 3 fatty acids, both found at high levels in galactolipids.  相似文献   

11.
Frost hardening of seedlings of Scots pine (Pinus sylvestris) at a non-freezing temperature of 4°C resulted in a 2-fold increase of the acyl lipids of the needles. This was because of increases in phospholipids and triglycerides. The galactolipid content of the needles was almost the same in unhardened and frost-hardened seedlings. In unhardened seedlings the mol ratio of monogalactosyl diacylglycerol (MGDG) to digalactosyl diacylglycerol (DGDG) was 1.7 ± 0.3 and 0.9 ± 0.2 in needles and isolated thylakoids, respectively. Corresponding ratios for frost-hardened seedlings were 1.5 ± 0.2 and 0.3 ± 0.03. The lower ratios found in isolated thylakoids, particularly in thylakoids from frost-hardened seedlings, are suggested to depend on the enzyme galactolipid: galactolipid galactosyltransferase being active during the isolation procedure. This is deduced from the result that the content of MGDG decreased and that of DGDG and 1.2 diglycerides increased. Needles of Scots pine also contain phospholipidase D. This enzyme was active during thylakoid preparation, particularly after frost hardening, as judged from the large amount of phosphatidic acid found the in thylakoid fraction isolated from frost-hardening needles. The fatty acid composition of the acyl lipids showed no major changes due to hardening at non-freezing temperature.  相似文献   

12.
Oriented multibilayers of chloroplast galactolipids: monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) modified with violaxanthin and zeaxanthin were examined by X-ray diffractometry and linear dichroism. The results obtained suggest that zeaxanthin, in contrast to violaxanthin, has a significant ordering effect on galactolipid bilayers. The best ordered system consists of DGDG and zeaxanthin. In this case, the angle between the long axis of zeaxanthin molecule and the normal to the plane of bilayers amounts to 9 degrees and system has a periodicity of 61.7 A. The analogous angles in systems MGDG + violaxanthin, MGDG + zeaxanthin and DGDG + violaxanthin are clearly wider (35 degrees, 17 degrees and 28 degrees, respectively) but diffractograms show no distinct maxima.  相似文献   

13.
Primary leaves of Phaseolus vulgaris show concomitant changes in phospholipid, galactolipid, chlorophyll and fresh weight during leaf development from 3 to 32 days after planting. Phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl inositol show only small changes on a mole per cent lipid phosphate basis during leaf development. The chloroplast lipids, phosphatidyl glycerol, monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) all show marked increases and decreases which are coincident with chloroplast development. The decline in the leaf content of chloroplast polar lipids and chlorophyll become evident upon reaching maximal leaf size. The molar ratio of galactolipids (MGDG/DGDG), reaches a maximum value of 2.3 in expanding leaves, but steadily declines during senescence to a minimum value of 1.5 at abscission. The declining ratio is caused by a preferential loss of MGDG in the senescing leaves.  相似文献   

14.
Mono‐ and digalactosyldiacylglycerol (MGDG and DGDG, respectively) are important galactolipids that comprise photosynthetic membranes in almost all photosynthetic organisms. Intact forms of MGDG and DGDG of Euglena gracilis and Lepocinclis acus, two example euglenids with secondary plastids of green algal origin, were elucidated with fatty acid regiochemistry via positive‐ion electrospray ionization/mass spectrometry at two growth temperatures. At 20°C, E. gracilis and L. acus produced predominantly 18:3/16:4 (sn‐1/sn‐2) MGDG, whereas at 30°C this was supplanted by 18:2/16:2 MGDG. At both temperatures were also observed a variety of other MGDG and DGDG forms, including C20 fatty acid‐containing forms not expected in a green algal‐derived plastid. In addition to providing structural details of MGDG and DGDG not available in past studies, these results suggest a previously unknown relationship between these two organisms and the red algae. This study also illustrates that temperature modulation of galactolipids occurs via modification of unsaturation of both the sn‐1 and sn‐2 fatty acids; this is fundamentally different from previously published studies from our laboratory on other algal classes.  相似文献   

15.
Among photomixotrophic green calluses tested (N. rustica. N. tobacum L. cv. BY-4 and Samsun), the callus of Samsun had the highest contents of chlorophyll and chloroplast lipids, such as monogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG), sulfoquinovosyldigly-ceride (SQDG) and phosphatidylglycerol (PG). However, the chlorophyll and chloroplast lipids in the green callus of Samsun were still 1/6 and 1/3 of that in the parent leaves, respectively. The relative content of a-linolenate in MGDG, DGDG and SQDG of the green calluses were higher than that of the white calluses. The ratios of hexadecatrienoate in MGDG and hexadeceno-ate 3-trans) in PG in the green calluses were trace or less compared with that of the parent leaves. The crude lipids and total fatty acid contents of the chlorophyll deficient leaves (N. taba-cum L. cv. Consolation 402 and Dominant Aurea Su/su) were almost the same as those of the normal leaves (cv. BY-4 and Samsun), although the chlorophyll contents of the chlorophyll deficient leaves were 1/3 ~ 1/4 of that of the normal leaves. The ratios of chloroplast lipids in the total polar lipids in the chlorophyll deficient leaves were a little lower than that in the normal green leaves, but the former had a slightly higher ratio of phospholipids such as phosphatidylcholine and phosphatidylethanolamine than the latter. There were few differences in the fatty acid compositions of each individual lipid betweeen both types of leaves.  相似文献   

16.
One of the major characteristics of chloroplast membranes is their enrichment in galactoglycerolipids, monogalactosyldiacylglycerol (MGDG), and digalactosyldiacylglycerol (DGDG), whereas phospholipids are poorly represented, mainly as phosphatidylglycerol (PG). All these lipids are synthesized in the chloroplast envelope, but galactolipid synthesis is also partially dependent on phospholipid synthesis localized in non-plastidial membranes. MGDG synthesis was previously shown essential for chloroplast development. In this report, we analyze the regulation of MGDG synthesis by phosphatidic acid (PA), which is a general precursor in the synthesis of all glycerolipids and is also a signaling molecule in plants. We demonstrate that under physiological conditions, MGDG synthesis is not active when the MGDG synthase enzyme is supplied with its substrates only, i.e. diacylglycerol and UDP-gal. In contrast, PA activates the enzyme when supplied. This is shown in leaf homogenates, in the chloroplast envelope, as well as on the recombinant MGDG synthase, MGD1. PG can also activate the enzyme, but comparison of PA and PG effects on MGD1 activity indicates that PA and PG proceed through different mechanisms, which are further differentiated by enzymatic analysis of point-mutated recombinant MGD1s. Activation of MGD1 by PA and PG is proposed as an important mechanism coupling phospholipid and galactolipid syntheses in plants.  相似文献   

17.
Although oxylipins can be synthesized from free fatty acids, recent evidence suggests that oxylipins are components of plastid-localized polar complex lipids in Arabidopsis (Arabidopsis thaliana). Using a combination of electrospray ionization (ESI) collisionally induced dissociation time-of-flight mass spectrometry (MS) to identify acyl chains, ESI triple-quadrupole (Q) MS in the precursor mode to identify the nominal masses of complex polar lipids containing each acyl chain, and ESI Q-time-of-flight MS to confirm the identifications of the complex polar lipid species, 17 species of oxylipin-containing phosphatidylglycerols, monogalactosyldiacylglycerols (MGDG), and digalactosyldiacylglycerols (DGDG) were identified. The oxylipins of these polar complex lipid species include oxophytodienoic acid (OPDA), dinor-OPDA (dnOPDA), 18-carbon ketol acids, and 16-carbon ketol acids. Using ESI triple-Q MS in the precursor mode, the accumulation of five OPDA- and/or dnOPDA-containing MGDG and two OPDA-containing DGDG species were monitored as a function of time in mechanically wounded leaves. In unwounded leaves, the levels of these oxylipin-containing complex lipid species were low, between 0.001 and 0.023 nmol/mg dry weight. However, within the first 15 min after wounding, the levels of OPDA-dnOPDA MGDG, OPDA-OPDA MGDG, and OPDA-OPDA DGDG, each containing two oxylipin chains, increased 200- to 1,000-fold. In contrast, levels of OPDA-hexadecatrienoic acid MGDG, linolenic acid (18:3)-dnOPDA MGDG, OPDA-18:3 MGDG, and OPDA-18:3 DGDG, each containing a single oxylipin chain, rose 2- to 9-fold. The rapid accumulation of high levels of galactolipid species containing OPDA-OPDA and OPDA-dnOPDA in wounded leaves is consistent with these lipids being the primary products of plastidic oxylipin biosynthesis.  相似文献   

18.
The thylakoid membranes of the chloroplast harbor the photosynthetic machinery that converts light into chemical energy. Chloroplast membranes are unique in their lipid makeup, which is dominated by the galactolipids mono‐ and digalactosyldiacylglycerol (MGDG and DGDG). The most abundant galactolipid, MGDG, is assembled through both plastid and endoplasmic reticulum (ER) pathways in Arabidopsis, resulting in distinguishable molecular lipid species. Phosphatidic acid (PA) is the first glycerolipid formed by the plastid galactolipid biosynthetic pathway. It is converted to substrate diacylglycerol (DAG) for MGDG Synthase (MGD1) which adds to it a galactose from UDP‐Gal. The enzymatic reactions yielding these galactolipids have been well established. However, auxiliary or regulatory factors are largely unknown. We identified a predicted rhomboid‐like protease 10 (RBL10), located in plastids of Arabidopsis thaliana, that affects galactolipid biosynthesis likely through intramembrane proteolysis. Plants with T‐DNA disruptions in RBL10 have greatly decreased 16:3 (acyl carbons:double bonds) and increased 18:3 acyl chain abundance in MGDG of leaves. Additionally, rbl10‐1 mutants show reduced [14C]–acetate incorporation into MGDG during pulse?chase labeling, indicating a reduced flux through the plastid galactolipid biosynthesis pathway. While plastid MGDG biosynthesis is blocked in rbl10‐1 mutants, they are capable of synthesizing PA, as well as producing normal amounts of MGDG by compensating with ER‐derived lipid precursors. These findings link this predicted protease to the utilization of PA for plastid galactolipid biosynthesis potentially revealing a regulatory mechanism in chloroplasts.  相似文献   

19.
Dunaliella salina cells were pulse-labeled for 2 min with [14C]palmitic acid, [14C]oleic acid, or [14C]lauric acid in order to trace the pathway of galactolipid biosynthesis and desaturation. Through the use of high performance liquid chromatography it was possible to follow the movement of radioactivity through many individual molecular species of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) for periods of 24 h and, in some cases, as much as 120 h. Analysis of the fatty acid fluxes permitted us to refine current views regarding biosynthesis of the predominantly "prokaryotic" galactolipids. The initial D. salina MGDG molecular species, containing paired oleate and palmitate (18:1/16:0), can follow two metabolic routes. If the palmitoyl chain is desaturated to 16:1, the resulting 18:1/16:1 MGDG is subject to rapid further desaturation to varying degrees, and a part of these products is subsequently galactosylated to DGDG. Contrary to widely held opinions, these DGDG molecular species can themselves be further desaturated toward a 18:3/16:4 final product. In a separate series of reactions, a smaller portion of the nascent 18:1/16:0 MGDG is directly galactosylated to 18:1/16:0 DGDG. This molecular species can then be sequentially desaturated to 18:2/16:0 DGDG and 18:3/16:0 DGDG. However, there is only very limited desaturation of the palmitoyl group attached to these molecular species.  相似文献   

20.
To understand the phenomenon by which infection of seed-transmitted Barley stripe mosaic virus (BSMV) alters membrane structures and inhibits protochlorophyllide biosynthesis of dark-grown barley ( Hordeum vulgare L.) plants, we analysed the presence of NADPH:protochlorophyllide oxidoreductase (POR, EC 1.3.1.33) and the galactolipid content and fatty acid composition. The amount of POR in etioplasts of infected leaves, compared with non-infected leaves, was reduced, as measured by immunoelectron microscopy and Western blot. These results are in agreement with the previously described reduction of the ratio of the photoactive 650 nm to non-photoactive 630 nm absorbing protochlorophyllide forms ( Harsányi et al. , 2002 . Physiol. Plant 114 , 149–155). The galactolipid content was lower in infected leaves. Monogalactosyl-diacylglycerol (MGDG) content was reduced to 40% and digalactosyl-diacylglycerol to 55% of control plants on a fresh weight basis. In infected plants, the proportion of linolenic acid decreased in both galactolipids. The lower amount of highly unsaturated fatty acids and the reduced abundance of MGDG correlated well with the previously detected reduction in the membrane ratio of prolamellar body (PLB) to prothylakoid ( Harsányi et al. , 2002 . Physiol. Plant 114 , 149–155). The reduced amount of POR and the above described alterations in the lipid composition resulted in a disturbed structure of PLBs. As a consequence, pigment synthesis and the greening process were inhibited in infected cells, in turn explaining the appearance of chlorotic stripes of BSMV-infected barley leaves. Our results show that BSMV infection can be detected at a very early stage of leaf development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号