共查询到20条相似文献,搜索用时 15 毫秒
1.
In a field experiment on winter wheat, take‐all on plants and the infectivity of the soil were studied in crop sequences with different combinations of sowing dates. Take‐all was negligible in the first wheat crop, but thereafter the mean disease intensity (measured using a take‐all rating, TAR, with a maximum of 300) was 108, 190, 118 and 251 in the second to fifth successive crops. In each growing season, the disease differed amongst sequences and built up more rapidly and was more intense on plants sown in mid‐September than on plants sown in mid‐October. In late‐sown plots, where volunteers had been present during the mid‐September to mid‐October period, take‐all reached an intensity intermediate between that in early‐sown plots and that in late‐sown plots that had been kept free of volunteers. Volunteers, therefore, partially offset the expected beneficial effect of decreased disease with later sowing. Differences in take‐all amongst sequences were most pronounced in the second wheat crop and early sowing of the previous wheat increased intensity of disease. In the following (third) crop, differences in disease intensity amongst sequences were smaller. Soil infectivity (measured by seedling bioassay after harvest) built up progressively from a low level after the first crop to peak after the third crop. In this build‐up phase, soil infectivity estimates were always numerically greater after harvest of early‐sown treatments than after later‐sown treatments, although never significant at P= 0.05. The greatest difference (P= 0.06) was recorded in October before sowing of the third crop, where the comparison was between soil after two previous early sowings and soil after two previous later sowings and control of volunteers. In the same autumn, presence of green cover (i.e. volunteers) was associated with a smaller loss of soil infectivity between harvest and later sowing than occurred in an absence of green cover. In 2nd–4th crops, where comparisons were available and mean TARs indicated moderate levels of take‐all, sowing later had no yield benefit, despite more take‐all and greater soil infectivity associated with early sowing. Important considerations for the management of crops at risk of take‐all are 1) choosing appropriate sowing dates to minimize take‐all or to encourage take‐all decline and 2) controlling volunteers and weed hosts where crops are sown late to minimise take‐all. 相似文献
2.
In a field cropped with wheat, a high and low level of soil conduciveness to take-all were induced by applying a nitrogen fertilizer with either calcium nitrate or ammonium sulphate. From these two soils, two representative populations of fluorescent pseudomonads were tested for their in situ behaviour. Take-all index and root dry weight were assessed on plants cropped in soils infested with Gaeumannomyces graminis var tritici (Ggt) and each bacterized with one of the isolates of fluorescent pseudomonads. The bacteria tested can be split into three groups: antagonists which reduce take-all, deleterious isolates which aggravate the disease and neutral without evident effect on the disease. The predominance of antagonistic fluorescent pseudomonads in the NH4-treated soil and the predominance of deleterious ones in the NO3-treated soil was confirmed after statistical analysis. The microbial impact on take-all must be more considered as the resulting effect of divergent activities of both rhizobacteria types than the only consequences of the presence of antagonistic pseudomonads. All the high cyanogenic pseudomonads were antagonists in situ and were more numerous in the NH4-treated soil than in the NO3-treated soil. 相似文献
3.
Take-all of wheat, caused by Gaeumannomyces graminis var tritici (Ggt), is reduced by ammoniacal fertilizers as compared to nitrate sources. This influence of nitrogen on the disease is only observed on nodal roots at flowering. But soil conduciveness to take-all, as measured in a soil bioassay, is modified earlier. Forty days after nitrogen application at early tillering, the NH4-treated soil became less conducive than the NO3-treated one. When nitrogen applications are done at sowing and at tillering, differences in disease propagation between the two soils are enhanced. Results from four years of experimentation show that when the level of natural soil inoculum is high, disease severity is reduced by ammonium, showing an effect on the parasitic phase of Ggt. At a low level of natural inoculum the effect of the source of nitrogen is mainly observed on the percent of infected plants, indicating that the saprophytic and preparasitic phases are affected. Rhizospheric bacterial populations increase from sowing to tillering, but differences on take-all conduciveness after tillering are not correlated with differences in the amounts of aerobic bacteria or fluorescent pseudomonads isolated from soils treated with different sources of nitrogen. Qualitative changes in fluorescent Pseudomonas spp. populations, like in vitro antagonism, are more likely to explain differences in soil conduciveness to take-all than are quantitative changes in this group. Nevertheless, the introduction of Ggt in a cropped soil leads to a greater increase in fluorescent pseudomonads populations than in total aerobic bacteria.The delay between reducing soil conduciveness and reducing disease in the field with ammonium nitrogen fertilization, the qualitative change of fluorescent pseudomonads populations and the role of necroses in rhizobacteria multiplication, provide information leading to our representation of a dynamic model based on the differentiation of the wheat root system into seminal and nodal roots. 相似文献
4.
Winter wheat was grown for six successive years (Expt 1) and for three successive years (Expt 2) in field experiments on different soil types. Artificial inoculum of the take-all fungus (Gaeumannomyces graminis var. tritici cultured on autoclaved oat grains) was incorporated in the soil of some of the plots just before, or at, sowing of the first winter wheat crop. Expt 1 tested the incorporation of similar amounts of inoculum (212 kg ha-1) at different depths. Expt 2 tested different amounts of inoculum at the same, shallow depth. Early sowing (September), late sowing (October) and spring inoculation were additional treatments, applied to the first crop only, in Expt 2. Seasonal factors apart, the disease outcome in the first year after inoculation depended on amounts and placement of applied inoculum, as well as date of sowing. Deeper inoculum resulted in less disease (Expt 1). Severe take-all was produced in Expt 2 by incorporating inoculum shallowly in sufficient quantities (400 kg ha-1 or more). Less inoculum (200 kg ha-1) generated less disease, especially in earlier-sown plots. Differences in disease amongst inoculum treatments were greatest in the first year and diminished subsequently, particularly where sowing had been early in the first year. In Expt 1, where first crops exposed to artificial inoculum developed moderate-to-severe disease, disease in subsequent second and/or third crops was less. In the fourth crop a second peak of disease occurred, coinciding with a first peak in sequences without added inoculum. Take-all decline (TAD) appeared to be expressed in all sequences thereafter. In Expt 2 in sequences without added inoculum, TAD occurred after a peak of disease in the second crop. Where 400 kg ha-1 or more of inoculum were added, disease was severe in the first year and decreased progressively in successive years. Disease was less patchy in plots that received artificial inoculum. However, it remains uncertain mat severe disease caused by artificial inoculation achieved an early onset of true TAD. The infectivity of the top 12 cm of soil in the first 3 yr of Expt 1, determined by bioassay, depended on the depth of added inoculum and amount of disease in subsequent crops. However, at the time of the naturally occurring peak of disease severity (in either inoculated or non-inoculated plots) it did not predict either disease or TAD. Differences and similarities amongst epidemics developing naturally and those developing from different amounts and placement of applied inoculum have been revealed. The epidemiological implications of adding inoculum and the potential value of artificially-created epidemics of take-all in field trials are discussed. 相似文献
5.
This paper reports results from a 3-year field experiment which examined Nitrogen (N) leaching loss from land under various set-aside managements. Four treatments were examined: three ploughed plots which were sown with wheat, ryegrass or maintained fallow; the fourth treatment was unploughed and natural weed growth (volunteers) permitted. The l-year set-aside was followed by two winter wheat test crops. Ceramic suction cups were installed at a depth of 90 cm and used to collect drainage water. N leaching loss was calculated by multiplying drainage volume, calculated from meteorological data, by its inorganic N concentration.Set-aside management significantly affected N leaching loss over the three years. During the set-aside year, the peak nitrate concentration from the unploughed treatment growing volunteer weeds was significantly lower than that from ploughed plots. Of the latter, by the spring, crop (i.e. wheat and ryegrass) assimilation of N significantly reduced N concentration compared to the fallow. The four set-aside treatments had a carry-over effect to the following year (first wheat test crop) resulting in significant differences in N losses. Leaching following the ryegrass treatment was very small and we believe that the grass residues minimised rates of net-N mineralization.The influence of set-aside management continued to the second wheat test crop where N loss was greater under the all wheat rotation because take-all had reduced yield and therefore crop N uptake. 相似文献
6.
Average percentages of winter wheat plants with severe take‐all were decreased by up to half by azoxystrobin applied as foliar sprays in four field experiments. Decreased take‐all in three of the experiments was associated with increased grain yield but effects on other diseases may have contributed to these responses. Standard fungicide sprays were ineffective. The effects differed, but not consistently, among different cultivars that were tested in three of the experiments. One, two or three sprays of azoxystrobin or kresoxim‐methyl, in autumn, spring or summer, were tested in the fourth experiment. Unlike azoxystrobin, kresoxim‐methyl had no consistent effects but a smaller amount was applied. Two or three sprays of azoxystrobin were more effective than a single spray but their timing was unimportant. Such control of a root disease by a foliar‐applied fungicide is unusual but may help to explain some of the unexpectedly large yield responses to azoxystrobin that have been reported. This relatively broad‐spectrum fungicide may have the potential to contribute to the practical management of take‐all but further research is needed to determine how best to exploit its effects consistently. 相似文献
7.
Background and aims
Take-all, caused by the fungus Gaeumannomyces graminis var. tritici, is the most damaging root disease of wheat. A severe attack often leads to premature ripening and death of the plant resulting in a reduction in grain yield and effects on grain quality (Gutteridge et al. in Pest Manag Sci 59:215–224, 2003). Premature death of the plant could also lead to inefficient use of applied nitrogen (Macdonald et al. in J Agric Sci 129(2):125–154, 1997). The aim of this study was to determine crop N uptake and the amount of residual mineral N in the soil after harvest where different severities of take-all had occurred.Methods
Plant and soil samples were taken at anthesis and final harvest from areas showing good and poor growth (later confirmed to be caused by take-all disease) in three winter wheat crops grown on the same soil type on Rothamsted Farm in SE England in 1995, 2007 and 2008 (harvest sampling only). All crops received fertiliser N in spring at recomended rates (190–200?kg?N ha?1). On each ocassion crops were assessed for severity of take-all infection (TAR) and crop N uptakes and soil nitrate plus ammonium (SMN) was determined. Grain yields were also measured.Results
Grain yields (at 85% dry matter) of crops with moderate infection (good crops) ranged from 4.3 to 13.0?t ha?1, compared with only 0.9–4.5?t ha?1 for those with severe infection (poor crops). There were significant (P?<?0.05) negative relationships between crop N uptake and TAR at anthesis and final harvest. At harvest, good crops contained 129–245?kg?N ha?1 in grain, straw and stubble, of which 85–200?kg?N ha?1 was in the grain. In contrast, poor crops contained only 46–121?kg?N ha?1, of which only 22–87?kg?N ha?1 was in the grain. Positive relationships between SMN and TAR were found at anthesis and final harvest. The SMN in the 0–50?cm layer following harvest of poor crops was significantly (P?<?0.05) greater than that under good crops, and most (73–93%) was present as nitrate.Conclusions
Localised patches of severe take-all infection decreased the efficiency with which hexaploid wheat plants recovered soil and fertiliser derived N, and increased the subsequent risk of nitrate leaching. The risk of gaseous N losses to the atmosphere from these areas may also have been enhanced. 相似文献8.
小麦远缘杂交后代对小麦全蚀病抗病性研究 总被引:8,自引:0,他引:8
研究了小麦—华山新麦草衍生系和小麦—簇毛麦衍生系19份材料苗期对小麦全蚀病菌禾顶囊壳小麦变种的抗病性,对9份抗病性较高的材料进行田间全生育期抗病性测试。结果表明:9份材料在不同生育期抗病性表现不同,苗期抗病性均高,越冬期无死亡;V2代换系、H922—9—12和V9125—2在返青期抗病性较高,病根严重度低于5.5%;H922—9—12和V9129—1在扬花期抗病性表现较好,成穗率可达80%;H922—9—12和V2代换系在成熟期抗病性较高,白穗率在13.8%以下。对照小偃6号高度感病,蒙燕94—4高度抗病。 相似文献
9.
M. L. Soulas B. L. Bihan P. Camporota C. Jarosz M. I. Salerno R. Perrin 《Mycorrhiza》1997,7(2):95-100
Field experiments were carried out in a forest nursery during the summer of 1994 to examine the effect of soil solarization
on ectomycorrhizal soil infectivity (ESI) and soil receptiveness to inoculation with Laccaria bicolor. Soil samples from solarized, steamed, fumigated and untreated plots were periodically collected and assayed for ESI. Untreated
soil exhibited high ESI. Solarization was as effective as steaming or fumigation in reducing ESI in the uppermost layer. Solarization
with a double layer of polyethylene film and fumigation were the only treatments which reduced ESI deeper in the soil. During
July, the temperature of covered beds reached 50 °C at a soil depth of 5 cm. Ectomycorrhizal fungi were among the soil-borne
fungi most sensitive to solar heating. Soil solarization provides an effective disinfection method for controlled mycorrhization
in forest nurseries.
Accepted: 10 April 1997 相似文献
10.
The management and effects of 3-year and 5-year set-aside covers on soil mineral nitrogen (SMN, 0.0–0.9 m) were studied at six sites in England. Soil mineral N was measured annually in autumn and spring during the period of set-aside cover, with more frequent SMN sampling over the first winter after ploughing out the covers. Spring SMN was measured in the second year after set-aside. Nitrate leaching losses were also measured at three sites in the first winter after destruction of the 5-year set-aside covers. Winter cereals were grown in both test years after each set-aside period.Amounts of both autumn and spring SMN in the perennial rye-grass (PRG), perennial rye-grass/white clover (PRG/WC) and natural regeneration (NR) covers were generally less than, or similar to those in the continuous arable treatment during each year of set-aside, indicating a slightly smaller nitrate leaching risk under set-aside management. Slight increases in autumn SMN, and hence leaching potential were, however, observed under PRG/WC in the fourth and fifth years, compared with continuous arable cropping.Ploughing out of both 3-year and 5-year covers increased soil N supply and potential nitrate leaching losses over winter, compared with continuous arable cropping. By the following spring, mean increases across all sites in amounts of SMN after 3-year covers of PRG, NR and PRG/WC were 14, 18 and 33 kg ha–1 N, respectively, compared with the arable rotation. Equivalent increases in spring SMN following destruction of the 5-year set-aside covers were almost identical, at 17, 19 and 33 kg ha–1, respectively, although only the ploughed-out PRG/WC covers increased SMN at the clay sites. Measured nitrate leaching losses in the first winter after 5-year set-aside were greatest after PRG/WC at two sites on shallow chalk but greatest after NR, which had a naturally large clover content, at the third site which was on a sandy soil. However, the leaching losses after set-aside were relatively small, relative to typical losses after ploughing out intensively managed grass or grass/clover swards, and would have been compensated for by potentially less leaching during set-aside.Spring SMN measurements in the second year after ploughing out the set-aside covers, showed negligible or, for PRG/WC, only slight increases (12 – 18 kg ha–1) in residual soil N supply after both 3-year and 5-year covers, compared to continuous arable cropping. The extra N mineralisation after cover destruction justified small reductions in fertiliser N inputs for the first, but not second crop following either 3- or 5-year set-aside, unless the cover had contained a large clover content. Both 3-year and 5-year set-aside covers had minimal or no effect on either organic matter content, apart from a slight increase in the PRG/WC treatments, or extractable phosphorus, potassium and magnesium status in the topsoil. 相似文献
11.
小麦-华山新麦草抗全蚀病新种质的分子细胞遗传学研究 总被引:4,自引:0,他引:4
对小麦-华山新麦草附加系H20和代换系H1的抗病性及分子细胞遗传学进行了研究。结果 表明,H20和H1的体细胞染色体数目范围分别为42~44和40~42,2n=44和2n=42的细胞频率分别为58.33%和90%;花粉母细胞减数分裂中期Ⅰ,染色体构型分别为21.55Ⅱ十0.90Ⅰ和20.74Ⅱ十0.52Ⅰ,22Ⅱ和21Ⅱ的细胞频率分别为61.56%和86.18%;与中国春测交,21Ⅱ十1Ⅰ和20Ⅱ十2Ⅰ的细胞频率分别为70.14%和88.59%。用华山新麦草基因组DNA作探针进行原位杂交,结果显示H20和H1中均有2条华山新麦草染色体,他们的染色体构成分别为2n=44=42W 2N和2n=42=40W 2N。对全蚀病菌,H20表现近高度抗病性,H1表现中度抗病性。 相似文献
12.
This study was aimed at analysing and quantifying the response of the root system dynamics of a wheat crop to waterlogging. Two experiments were carried out in parallel: one under controlled conditions with semi-permanent water tables using lysimeters equipped with oxygen measurers, and the other under conditions of artificially drained plots by continually monitoring their hydraulic functioning. The root system was observed frequently using the root mapping method, and this made it possible to measure the growth of the root front, to estimate root densities, and infer growth indices from them. The results showed that the anoxic medium for wheat roots consisted of a water-saturated soil with an oxygen concentration of below a critical threshold estimated to be 0.12 mol m–3 water. The results also showed that the area which was unfavourable to root growth corresponded to the water table topped with a capillary zone of approximately 6 cm. Once the critical threshold had been reached, it was the water-table duration that explained root behaviour and the first effects were perceptible after approximately 48 h. On the basis of these results, two stress variables were analysed: water-table duration in the root zone (WTD) and proportion of roots in the water table (RPWT). The RPWT variable gave the best results within the two experimental contexts. In the case of the permanent regime, this variable made it possible to consider the root proliferation observations made above the saturated zone. Equations linking the stress variable RPWT to the growth indices are proposed that offer new perspectives to modelling waterlogging effects. 相似文献
13.
抗全蚀病小麦-华山新麦草中间材料H8911的细胞遗传学研究与利用 总被引:8,自引:1,他引:8
抗小麦全蚀病中间材料H8911(BC1F1)是通过小麦与华山新麦草杂种幼胚培养及杂种F1(ABDN2n=28)再与小麦回交后得到的。根尖细胞染色体数目49条,花粉母细胞减数分裂中期Ⅰ,染色体构型为20.85(19~21)Ⅱ 7.30(7~11)Ⅰ,21Ⅱ 7Ⅰ的细胞占86.67%。BC1F2和BC1F3体细胞染色体数目范围分别为45~53和44~52,49条染色体的植株类型分别占30.19%和27.50%,华山新麦草染色体丢失率分别为11.85%和13.14%;花粉母细胞减数分裂中期Ⅰ,染色体构型分别为20.62(18~22)Ⅱ 7.64(5~13)Ⅰ 0.04(0~1)Ⅲ和20.53(17~22)Ⅱ 7.79(5~15)Ⅰ 0.05(0~1)Ⅲ,21Ⅱ 7Ⅰ的细胞分别占77.24%和69.42%。随着自交世代的延续,21Ⅱ 7Ⅰ细胞的传递能力逐渐降低。利用H8911作供体,选育出小麦-华山新麦草抗全蚀病新种质13个,其中1个附加系表现近高度抗病性,6个附加系、3个代换系和3个易位系材料表现中度抗病性。 相似文献
14.
不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响 总被引:60,自引:0,他引:60
通过两个生长季试验,研究了不同耕作方式和秸秆还田及其交互效应对小麦全生育期0~20 cm土壤有机碳含量的影响.结果表明:小麦不同生育时期0~20 cm土层有机碳含量呈明显的动态变化;秸秆还田各处理的有机碳含量都高于无秸秆还田处理;保护性耕作措施土壤有机碳增加量显著高于传统翻耕.除传统翻耕处理外,各处理0~10 cm土层的有机碳含量都高于10~20 cm土层,秸秆还田各处理0~10 cm土层有机碳含量表现为深松(PS)>旋耕(PR)>免耕(PZ)>耙耕(PH)>传统翻耕(PC),而10~20 cm土层表现为传统翻耕(PC)>深松(PS)>旋耕(PR)>耙耕(PH)>免耕(PZ),说明保护性耕作措施能提高0~10 cm土层的有机碳含量.多因素方差分析表明:耕作因素、秸秆因素和两者交互效应在不同生育期对0~20 cm土层的有机碳含量都有显著影响. 相似文献
15.
Both antibiotics and siderophores have been implicated in the control of soilborne plant pathogens by fluorescent pseudomonads. In Pseudomonas fluorescens 2–79, which suppresses take-all of wheat, the importance of the antibiotic phenazine-1-carboxylic acid was established with mutants deficient or complemented for antiobiotic production and by isolation of the antibiotic from the roots of wheat colonized by the bacteria. Genetic and biochemical studies of phenazine synthesis have focused on two loci; the first is involved in production of both anthranilic acid and phenazine-1-carboxylic acid, and the second encodes genes involved directly in phenazine synthesis. Because the antibiotic does not account fully for the suppressiveness of strain 2-79, additional mutants were analyzed to evaluate the role of the fluorescent siderophore and of an antifungal factor (Aff, identified as anthranilic acid) that accumulates when iron is limiting. Whereas strains producing only the siderophore conferred little protection against take-all, Aff+ strains were suppressive, but much less so than phenazine-producing strains. Iron-regulated nonsiderophore antibiotics may be produced by fluorescent pseudomonads more frequently than previously recognized, and could be partly responsible for beneficial effects that were attributed in the past to fluorescent siderophores. 相似文献
16.
冬小麦免耕覆盖与生物有机肥施用对土壤细菌群落的影响 总被引:1,自引:0,他引:1
为揭示保护性耕作措施对土壤细菌群落结构及多样性的影响规律,选取免耕覆盖+施生物有机肥(NF)、免耕覆盖+不施生物有机肥(NC)、传统耕作不覆盖+施生物有机肥(TF)和传统耕作不覆盖+不施生物有机肥(TC)4个处理,以农田土壤生态系统为研究对象,利用16S rDNA基因Illumina MiSeq高通量测序技术,研究了冬小麦免耕覆盖与生物有机肥施用对土壤细菌群落结构及多样性的影响。结果表明:1)与TC处理相比,NF处理显著降低了土壤pH (P=0.03*),增加了土壤全氮(P=0.002**)、总碳含量(P=0.0001**,P=0.007**),影响了土壤碳/氮比分配(P=0.003**)。2)从16个土壤样本中共获得细菌27门、86纲、125目、213科和315属,其中放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和变形菌门(Proteobacteria)为优势菌门,其相对丰度约占总丰度的82.40%。3)与传统耕作施生物有机肥处理相比,免耕覆盖施生物有机肥增加了土壤细菌的多样性指数(Simpson指数和Shannon指数),降低了ACE丰富度指数。4)NMDS及多元分析结果表明:土壤细菌群落丰富度指数、多样性指数均与土壤pH、速效磷和土壤碳/氮比成正相关,与土壤微生物生物量碳(SMBC)和土壤总碳成负相关;其中,土壤pH和SMBC分别是影响酸杆菌门和放线菌门的主要驱动因子。施生物有机肥和耕作措施两种因素均对土壤细菌群落结构组成产生了影响,但以施用生物有机肥对土壤细菌群落多样性的影响较明显;此外,施用生物有机肥在传统耕作和免耕覆盖两种情况下均增加了冬小麦产量,但以传统耕作施生物有机肥处理最明显。因此,传统耕作配施生物有机肥是宁夏南部山区改善土壤理化性质、增加土壤细菌群落丰富度和多样性的重要途径。 相似文献
17.
覆盖方式对旱地冬小麦土壤水分的影响 总被引:2,自引:0,他引:2
在黄土高原半干旱雨养条件下,研究了不同覆盖方式(夏季覆膜,T1;秋季覆膜,T2;小麦碎秆覆盖,T3;小麦整秆覆盖,T4;夏季覆膜+麦秆还田,T5;旧膜二茬利用,T6;无覆盖对照,CK)对旱地冬小麦土壤水分的影响.结果表明: T6在各时期、各土层土壤含水量普遍高于CK,其他5个覆盖处理可明显改善开花前0~90 cm土壤墒情,但开花后0~90 cm土层以及全生育期90~200 cm土层含水量普遍低于CK.全生育期0~200 cm土层平均含水量T6显著高于CK,两者差值为0.9%,其余处理均低于CK.0~200 cm土层平均含水量秸秆覆盖处理高于覆膜处理,旧膜二茬利用高于新覆膜.覆膜处理单位面积籽粒产量较CK提高20.3%~29.0%,秸秆覆盖处理较CK提高5.0%~16.7%,冬小麦产量与生育期耗水量呈显著正相关(r=0.77*). 相似文献
18.
The effect of intercropped legumes and three N fertilizer rates in a continuous maize (Zea mays L.) cropping system on the physical properties of two soils were investigated for three years. The legumes, being a mixture of alfalfa, clover and hairy vetch, had a significant cumulative effect on some physical properties of both soil. The lowest stability and smallest mean weight diameter of soil aggregates were associated with monoculture maize plots. Aggregate size and stability were not affected by N fertilization at any of the rates of 0, 70, and 140 kg ha-1 in intercropped plots, except that aggregate stability was actually reduced by N fertilization in one soil, the Ste. Rosalie clay. In maize plots in both soils, stability and size of soil aggregates were significantly increased with increased added N. Intercropped legumes significantly decreased dry bulk density and soil penetration resistance. Added N had no measurable influence on these compaction factors. Soil water properties were not significantly affected by either intercropping or N fertilization. Positive effects noted on soil aggregation and other physical properties in intercropped plots are the result of enhanced root activity, or incorporation of legumes as green manure, or both. Improvement of soil structure in maize plots associated with increasing N application was the result of increased maize-root residues. 相似文献
19.
A rapid, routine DNA-based assay to quantify Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease of cereals, has been developed and used for the prediction of take-all in a wide range
of field soils. Based on the correlation of the DNA-based assay and a soil bioassay, the risk of disease development can be
estimated. Ggt DNA levels of <30 pg, 30–50 pg and >50 pg in 0.1 g soil organic matter correspond to low, moderate and high levels of the
disease, respectively. Limitations in the prediction of take-all, including sampling requirements to obtain representative
soil samples from fields and increasing the sensitivity and the accuracy of the DNA assay, are described. The main advantage
in using the DNA-based assay, in estimating the amount of Ggt inoculum in soil, is that the levels of Ggt in soil samples can be assessed rapidly and accurately. Farmers can now have soil samples assessed before sowing. The DNA
result can be used to predict the potential yield loss and determine the most appropriate management options using decision
support software that is currently available. This DNA technology is currently being used commercially to detect and predict
take-all.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
G.L. Bateman R.J. Gutteridge J.F. Jenkyn & M.M. Self 《The Annals of applied biology》2008,152(2):243-254
Seed treatments containing fluquinconazole, silthiofam or a standard fungicide mixture with no activity against take‐all were compared in all combinations of sequences in successive second and third winter wheat crops in five field experiments and second to fourth crops in a sixth experiment. Compared with the standard treatment, silthiofam decreased take‐all more effectively than fluquinconazole when crops were sampled at tillering. In samples taken in summer, during grain filling, silthiofam often decreased the incidence of take‐all (percentage of plants with root symptoms) more than fluquinconazole, but fluquinconazole more effectively decreased the incidence of severe take‐all (percentage of plants with more than 75% of their root systems blackened). It is suggested that these differences are a consequence of more effective control of primary infection of roots by silthiofam and of secondary, root‐to‐root, infection by fluquinconazole. Silthiofam usually increased yield more than did fluquinconazole, perhaps as a consequence of better early protection during tiller and/or spikelet formation. Treatment with either of the fungicides affected epidemic development in the treated crop and in crops grown subsequently. In particular, decreased take‐all had the effect of delaying the year‐to‐year epidemic, so that nontreatment of a subsequent crop resulted in an upsurge in disease. Treatment with either take‐all fungicide of a crop grown after a treated crop was relatively effective if the epidemic in the comparable nontreated crop sequence was continuing to increase. It was, however, detrimental if the disease was approaching its peak in the first treated crop, particularly if a treated (fourth wheat) crop was being compared with a similar crop in a nontreated sequence in which take‐all decline had developed. These results provide a basis for recommendations for the use of seed treatment fungicides in sequences of wheat crops. 相似文献