首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Higher-order executive tasks such as learning, working memory, and behavioral flexibility depend on the prefrontal cortex (PFC), the brain region most elaborated in primates. The prominent innervation by serotonin neurons and the dense expression of serotonergic receptors in the PFC suggest that serotonin is a major modulator of its function. The most abundant serotonin receptors in the PFC, 5-HT1A, 5-HT2A and 5-HT3A receptors, are selectively expressed in distinct populations of pyramidal neurons and inhibitory interneurons, and play a critical role in modulating cortical activity and neural oscillations (brain waves). Serotonergic signaling is altered in many psychiatric disorders such as schizophrenia and depression, where parallel changes in receptor expression and brain waves have been observed. Furthermore, many psychiatric drug treatments target serotonergic receptors in the PFC. Thus, understanding the role of serotonergic neurotransmission in PFC function is of major clinical importance. Here, we review recent findings concerning the powerful influences of serotonin on single neurons, neural networks, and cortical circuits in the PFC of the rat, where the effects of serotonin have been most thoroughly studied.  相似文献   

2.
The effect of continuous treatment with the selective 5-HT1A agonist gepirone upon 5-HT2-mediated behavior and cortical 5-HT2 receptor binding sites was examined in naive rats or rats receiving noradrenergic (DSP4) or serotonergic (5,7-DHT) lesions. Continuous administration of gepirone in non-lesioned rats for 3, 7, or 14 days enhanced the head shake response to the 5-HT agonist quipazine. This enhancement of 5-HT2-mediated behavior occurred despite concomitant down-regulation of cortical 5-HT2 binding sites. However, 28 days of gepirone administration significantly reduced behavioral responsiveness to quipazine. The gepirone-induced facilitation of 5-HT2-mediated behavior observed after 7 days of continuous treatment was blocked in both DSP4 and 5,7-DHT-lesioned rats. However, both noradrenergic and serotonergic denervation failed to modify the down-regulation of 5-HT2 receptor binding sites produced by continuous gepirone administration. These results suggest that the curious dissociation of behavioral and biochemical indices of 5-HT2 receptor function produced by continuous gepirone treatment may be the result of a dual yet separate action of the drug on central presynaptic noradrenergic and serotonergic mechanisms and postsynaptic 5-HT receptors. Furthermore, the postsynaptic action of gepirone which reduces the maximal number of cortical 5-HT2 receptor binding sites may be the result of gepirone's agonist action at postsynaptic 5-HT1A receptors.  相似文献   

3.
Behavioral and Serotonergic Regulation of Circadian Rhythms   总被引:5,自引:0,他引:5  
Endogenous depression is often accompanied by alterations in core parameters of circadian rhythms, and antidepressant treatments, including serotonergic drugs, sleep deprivation and exercise, alter circadian phase or period in humans or animal models. Antidepressants may act in part through the circadian system, and behavioral antidepressants through a common serotonergic path to the clock. This review evaluates the evidence from animal models that serotonin (5-HT) mediates phase-shifting effects of behavioral stimuli on circadian rhythms. In rodents, 'exercise' stimulated during the rest phase of the rest-activity cycle induces large phase shifts of circadian rhythms. These shifts can be mimicked by short-term sleep deprivation without intense activity. During wheel running or sleep deprivation, 5-HT release in the suprachiasmatic nucleus (SCN) circadian clock is significantly elevated. Lesions of 5-HT afferents to the SCN attenuate phase shifts or entrainment induced by activity in response to some stimuli (e.g., triazolam injections in hamsters, treadmill running in mice) but not others (e.g., novel wheel confinement in hamsters). Antagonists selective to 5HT1, 2 or 7 receptors do not attenuate shifts induced by wheel running, although 5-HT2/7 antagonists do partially block shifts to saline injections. 5-HT agonists (e.g., 8-OH-DPAT) induce large shifts in vitro, but much smaller shifts in vivo, particularly if administered directly to the SCN. Procedures for inducing 5-HT supersensitivity in vivo result in larger shifts to 8-OH-DPAT. 5-HT stimuli may affect the clock by direct and indirect pathways, particularly through the thalamic intergeniculate leaflet, and the role of these pathways may differ across species. At the level of the SCN, 5-HT likely acts through 5-HT7 receptors on neurons and possibly also glial cells. These receptors may be useful targets for the development of antidepressant drugs. In aggregate, the literature provides mixed support for the hypothesis that exercise or behavioral arousal shift the circadian clock by a 5-HT pathway; the role of indirect pathways, interactions with other transmitters, cellular adaptations to denervation, glial cells, and species differences remain to be more fully clarified. Serotonergic and behavioral stimuli provide an intriguing route to elucidate the circadian clockworks and their possible role in depression.  相似文献   

4.
5.
H S Kim  Y R Son  S H Kim 《Life sciences》1999,64(26):2463-2470
The purpose of this study was to characterize behavioral interactions between nitric oxide synthase (NOS) inhibitors and serotonergic 5-HT2 receptors. In the present study, NOS inhibitors, N(G)-nitro-L-arginine, N(G)-nitro-L-arginine methylester, N(G)-monomethyl-L-arginine, 7-nitroindazole, trifluoperazine and NO scavenger, methylene blue markedly enhanced 5-hydroxytryptamine (5-HT)-induced selective serotonergic behavior, the head twitch response (HTR), in mice. However NO generators, sodium nitroprusside, 3-morpholinosydnonimine and S-nitroso-N-acetylpenicillamine as well as NO precursor, L-arginine markedly inhibited 5-HT induced HTR in mice. In the previous study, it was demonstrated that the N-methyl-D-aspartate (NMDA) receptor antagonists markedly enhanced 5-HT-induced selective serotonergic behavior, HTR, whereas NMDA itself inhibited 5-HT-induced HTR in mice. In the present study, it was demonstrated that the inhibition by a NMDA receptor agonist, NMDA of 5-HT-induced HTR was reversed by the treatment with NOS inhibitors, N(G)-nitro-L-arginine and N(G)-nitro-L-arginine methylester. The suppressive action by a NO generator, S-nitroso-N-acetylpenicillamine of 5-HT-induced HTR was also reversed by the treatment with NMDA receptor antagonists, MK-801 and dextromethorphan. These results have shown that the NO system is located down stream of NMDA receptors involved in modulation of 5-HT2-mediated HTR. Therefore, the enhanced effects of NOS inhibitors on 5-HT-induced HTR support experimental evidence for the NO/5-HT2 as well as NMDA/5-HT2 receptor interactions indicating that NO plays an important role in the glutamatergic modulation of the serotonergic function at the 5-HT2 receptor.  相似文献   

6.
Abstract

Neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) an ancient neurotransmitter, involved in several neurophysiological and behavioral functions, acts by interacting with multiple receptors (5-HT1-5-HT7). Alterations in serotonergic signalling have also been implicated in various psychiatric disorders. The availability of the genome data of nonhuman primates permits comparative analysis of human 5-HT receptors with sequences of non-human primates to understand evolutionary divergence. We compared and analyzed serotonergic receptor sequences from human and non-human primates. Phylogenetic analysis by Maximum Likelihood (ML) method classified human and primate 5-HT receptors into six unique clusters. There was considerable conservation of 5-HT receptor sequences between human and non-human primates; however, a greater diversity at the sub-group level was observed. Compared to the other subgroups, larger multiplicity and expansion was seen within the 5-HT4 receptor subtype in both human and non-human primates. Analysis of non-synonymous and synonymous substitution ratios (Ka/Ks ratio) using the Nei-Gojobori method suggests that 5-HT receptor sequences have undergone negative (purifying) selection over the course of evolution in human, chimpanzee and rhesus monkey. Abnormal human and non-human primate psychopathalogy and behavior, in the context of these variations is discussed. Analysis of these 5-HT receptors in other species will help understand the molecular evolution of 5-HT receptors, and its possible influence on complex behaviors, and psychiatric disorders.  相似文献   

7.
Endogenous depression is often accompanied by alterations in core parameters of circadian rhythms, and antidepressant treatments, including serotonergic drugs, sleep deprivation and exercise, alter circadian phase or period in humans or animal models. Antidepressants may act in part through the circadian system, and behavioral antidepressants through a common serotonergic path to the clock. This review evaluates the evidence from animal models that serotonin (5-HT) mediates phase-shifting effects of behavioral stimuli on circadian rhythms. In rodents, 'exercise' stimulated during the rest phase of the rest-activity cycle induces large phase shifts of circadian rhythms. These shifts can be mimicked by short-term sleep deprivation without intense activity. During wheel running or sleep deprivation, 5-HT release in the suprachiasmatic nucleus (SCN) circadian clock is significantly elevated. Lesions of 5-HT afferents to the SCN attenuate phase shifts or entrainment induced by activity in response to some stimuli (e.g., triazolam injections in hamsters, treadmill running in mice) but not others (e.g., novel wheel confinement in hamsters). Antagonists selective to 5HT1, 2 or 7 receptors do not attenuate shifts induced by wheel running, although 5-HT2/7 antagonists do partially block shifts to saline injections. 5-HT agonists (e.g., 8-OH-DPAT) induce large shifts in vitro, but much smaller shifts in vivo, particularly if administered directly to the SCN. Procedures for inducing 5-HT supersensitivity in vivo result in larger shifts to 8-OH-DPAT. 5-HT stimuli may affect the clock by direct and indirect pathways, particularly through the thalamic intergeniculate leaflet, and the role of these pathways may differ across species. At the level of the SCN, 5-HT likely acts through 5-HT7 receptors on neurons and possibly also glial cells. These receptors may be useful targets for the development of antidepressant drugs. In aggregate, the literature provides mixed support for the hypothesis that exercise or behavioral arousal shift the circadian clock by a 5-HT pathway; the role of indirect pathways, interactions with other transmitters, cellular adaptations to denervation, glial cells, and species differences remain to be more fully clarified. Serotonergic and behavioral stimuli provide an intriguing route to elucidate the circadian clockworks and their possible role in depression.  相似文献   

8.
We have studied the regulation of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor channels by serotonin signaling in pyramidal neurons of prefrontal cortex (PFC). Application of serotonin reduced the amplitude of AMPA-evoked currents, an effect mimicked by 5-HT(1A) receptor agonists and blocked by 5-HT(1A) antagonists, indicating the mediation by 5-HT(1A) receptors. The serotonergic modulation of AMPA receptor currents was blocked by protein kinase A (PKA) activators and occluded by PKA inhibitors. Inhibiting the catalytic activity of protein phosphatase 1 (PP1) also eliminated the effect of serotonin on AMPA currents. Furthermore, the serotonergic modulation of AMPA currents was occluded by application of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitors and blocked by intracellular injection of calmodulin or recombinant CaMKII. Application of serotonin or 5-HT(1A) agonists to PFC slices reduced CaMKII activity and the phosphorylation of AMPA receptor subunit GluR1 at the CaMKII site in a PP1-dependent manner. We concluded that serotonin, by activating 5-HT(1A) receptors, suppress glutamatergic signaling through the inhibition of CaMKII, which is achieved by the inhibition of PKA and ensuing activation of PP1. This modulation demonstrates the critical role of CaMKII in serotonergic regulation of PFC neuronal activity, which may explain the neuropsychiatric behavioral phenotypes seen in CaMKII knockout mice.  相似文献   

9.
The effects of nicotine on 5-hydroxytryptamine (5-HT) release from serotonergic nerve endings in rat dorsal hippocampal slices were studied. Nicotine (50-500 microM:) caused a concentration-dependent increase in 5-HT release. This effect was antagonised by mecamylamine (0.5 microM:), indicating an action at nicotinic receptors. Nicotine-evoked 5-HT release was not affected by tetrodotoxin (3 microM:), cadmium chloride (0.1 mM:), or the absence of Ca(2+) or Na(+) in the superfusion medium. Unexpectedly, higher concentrations of mecamylamine alone (1-50 microM:) increased 5-HT release. This suggested the presence of inhibitory input to 5-HT neurones and that these inhibitory neurones possess tonically active nicotinic receptors. The effect of mecamylamine (50 microM:) on 5-HT release was reduced by the muscarinic M(1) receptor agonist, McN-A-343 (100 microM:), but pirenzepine (0.005-1 microM:), which blocks M(1) receptors, alone increased 5-HT release. Hippocampal serotonergic neurones are known to possess both excitatory nicotinic receptors and inhibitory M(1) receptors. Although there may be several explanations for our results, one possible explanation is that nicotine stimulates 5-HT release by activating nicotinic heteroreceptors on 5-HT terminals. Mecamylamine (0.5 microM:) antagonises this effect, but higher concentrations increase 5-HT release indirectly by blocking the action of endogenous acetylcholine on nicotinic receptors situated on cholinergic neurones that provide muscarinic inhibitory input to 5-HT neurones.  相似文献   

10.
Fluoxetine (FLX) is a selective serotonin reuptake inhibitor and is among the top 100 drugs prescribed yearly in the United States and the United Kingdom. Tissue and water extraction methods were developed to detect and quantify FLX, norfluoxetine and the associated biological compounds serotonin (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), tryptophan (TRP) and melatonin (MEL) using LC/MS/MS. Acute mortality and sublethal physiological effects of FLX were assessed using standard static renewal toxicity tests in which juvenile sheepshead minnows (Cyprinodon variegatus) were exposed to FLX. Fluoxetine did not cause significant mortality at levels near currently reported environmental concentrations. Significant changes in neurotransmitter levels were observed within the serotonergic system in juvenile sheepshead minnows exposed at concentrations approximately one order of magnitude above those currently reported in the environment. Transformation activity ratios of a product to a precursor compound (5-HT/TRP, 5-HIAA/5-HT and MEL/5-HT) also exhibited significant changes with FLX treatment. Fluoxetine exposure did not only affect 5-HT but had additional effects both upstream and downstream of 5-HT within its synthesis and metabolic pathways. These sublethal changes within the serotonergic pathway may result in behavioral changes which could, in turn, have implications for the ecological response of populations to additional environmental stressors.  相似文献   

11.
Among human serotonin (5-HT) receptor subtypes, each G protein-coupled receptor subtype is reported to have one G protein-signaling cascade. However, the signaling may not be as simple as previously thought to be. 5-HT5A receptors are probably the least well understood among the 5-HT receptors, but the authors found that 5-HT5A receptors couple to multiple signaling cascades. When the 5-HT5A receptors were expressed in undifferentiated C6 glioma cells, they modulated the level of second messengers. For example, activation of 5-HT5A receptors inhibited the adenylyl cyclase activity and subsequently reduced the cAMP level, as previously reported. In addition to this known signaling via Gi/Go, 5-HT5A receptors are coupled to the inhibition of ADP-ribosyl cyclase and cyclic ADP ribose formation. On the other hand, activation of 5-HT5A receptors transiently opened the K+ channels, presumably due to the increase in intracellular Ca2+ after formation of inositol (1,4,5) trisphosphate. The K+ currents were inhibited by both heparin and pretreatment with pertussis toxin, suggesting the cross-talk between Gi/Go protein and phopholipase C cascade. Thus, the authors results indicate that 5-HT5A receptors couple to multiple second messenger systems and may contribute to the complicated physiological and pathophysiological states. Although this multiple signaling has been reported only for 5-HT5A/5-HT1 receptors so far, it is possible that other 5-HT receptor subtypes bear similar complexity. As a result, in addition to the wide variety of expression patterns of each 5-HT receptor subtype, it is possible that multiple signal transduction systems may add complexity to the serotonergic system in brain function. The investigation of these serotonergic signaling and its impairment at cellular level may help to understand the symptoms of brain diseases.  相似文献   

12.
The role of serotonin in mediating hypothalamic control of sexual behavior in estrone-primed ovariectomized (OVX) rats was studied by comparing the lordotic patterns following medial preoptic (MPOA) and arcuate-ventromedial (ARC-VM) infusions of serotonin (5-HT), methysergide (MS), and vehicle. In the initial experiments, low receptivity (preinfusion receptivity: mean lordosis/mount ratio = 0.164) was maintained by priming each animal with a low dose of estrone 48 hr prior to mating. The infusion of MS in either the MPOA or ARC-VM area resulted in a significant enhancement of lordotic behavior from initial low receptivity, 5-HT infusions were found to have no statistically significant effect upon lordotic behavior. In order to corroborate the findings observed in the low preinfusion receptivity protocol, OVX rats were primed with higher doses of estrone to maintain a high level of receptivity (preinfusion receptivity: mean lordosis/mount ratio = 0.787). Using this protocol, significant depressions in lordotic behavior were observed following MPOA or ARC-VM infusions of 5-HT, It was thus proposed that serotonergic receptors within the MPOA or ARC-VM areas have inhibitory effects upon lordotic behavior. In addition to the effects of 5-HT upon estrogen-induced sexual receptivity, serotonergic influences upon luteinizing hormone-releasing hormone (LRH)-facilitated mating behavior were also evaluated. Comparisons were made between the lordotic responses following MPOA or ARC-VM infusions of vehicle, LRH, or LRH with 5-HT in OVX rats primed with low doses of estrone. The infusion of LRH into the MPOA or ARC-VM significantly enhanced lordotic behavior above vehicle levels. However, the addition of 5-HT to the LRH infusate abolished this behavioral enhancement. These findings indicated that LRH and 5-HT have opposing effects within forebrain areas known to be important for the control of lordotic behavior.  相似文献   

13.
Depletion of telencephalic serotonin (5-HT) content by medical forebrain bundle lesions, which interrupt the ascending serotonergic pathways or by DL-p-chlorophenylalanine produces an increased sensitivity to pain as measured by the flinch-jump, stabilimetric, or hot-plate methods. Examination of the effects of a number of other lesions and drugs indicated that dopamine, norepinephrine and acetylcholine are not involved in pain sensitivity. Dosages of 75 mg/kg DL-5-hydroxytryptophan(5-HTP), 37.5 mg/kg L-5-HTP or 50 mg/kg Ro 4-4602 (NI-(DL-seryl)-N2-(2,3,4-trihydroxybenzyl)hydrazine) plus 37.5 mg/kg L-5-HTP administered to medical forebrain bundle lesioned rats returned both the telencephalic content of 5-HT and the pain threshold to normal values. Injection of 37.5 mg/kg of D-5-HTP or an equimolar dose of L-dopa had no effect on pain threshold. Normal animals display increased sensitivity to pain and decreased 5-HT contents in frontal pole, hippocampus, and amygdala during dark as compared to light hours. All three of these telencephalic areas are innervated by the ascending serotonergic pathways, and cells in these areas show inhibition of firing following the iontophoretic application of 5-HT. Taken together these data suggest that the serotonergic system normally acts to inhibit the effects of painful stimuli. A review of a variety of behavioral effects of 5-HT depletion including an enhanced response to lysergic acid diethylamide and amphetamine suggests that the ascending serotonergic system may have a general role in the inhibition of arousal, rather than a specific role with respect to various categories of behavior.  相似文献   

14.
The inducible serotonergic 1C115-HT cell line expresses a defined set of serotonergic receptors of the 5-HT2B, 5-HT1B/D, and 5-HT2A subtypes, which sustain a regulation of serotonergic associated functions through G-protein-dependent signaling. 1C115-HT cells have been instrumental to assign a signaling function to the cellular prion protein PrPC. Here, we establish that antibody-mediated ligation of PrPC concomitant to agonist stimulation of 5-HT receptors modulates the couplings of all three serotonergic receptors present on 1C115-HT cells. Specific impacts of PrP antibodies were monitored depending on the receptor and pathway considered. PrPC ligation selectively cancels the 5-HT2A-PLC response, decreases the 5-HT1B/D negative coupling to adenylate cyclase, and potentiates the 5-HT2B-PLA2 coupling. As a result, PrPC ligation disturbs the functional interactions occurring between the signaling pathways of the three receptor subtypes. In 1C115-HT cells, antagonizing cross-talks arising from 5-HT2B and 5-HT2A receptors control the 5-HT1B/D function. PrPC ligation reinforces the negative regulation exerted by 5-HT2B on 5-HT1B/D receptors. On the other hand it abrogates the blocking action of 5-HT2A on the regulatory loop linking 5-HT1B/D receptors. We propose that the ligation of PrPC affects the potency or dynamics of G-protein activation by agonist-bound serotonergic receptors. Finally, the PrPC-dependent modulation of 5-HT receptor couplings is restricted to 1C115-HT cells expressing a complete serotonergic phenotype. It critically involves a PrPC-caveolin platform implemented on the neurites of 1C115-HT cells during differentiation. Our findings define PrPC as a modulator of 5-HT receptor coupling to G-proteins and thereby as a protagonist contributing to the homeostasis of serotonergic neurons. They provide a foundation for uncovering the impact of prion infection on serotonergic functions.  相似文献   

15.
The metabolism of inositol phospholipids in response to serotonergic agonists was investigated in rabbit platelets. In platelets prelabelled with [3H]-inositol, in a medium containing 10 mM LiCl which blocks the enzyme inositol-1-phosphatase, 5-hydroxytryptamine (5-HT) caused a dose-dependent accumulation of inositol phosphates (IP). This suggests a phospholipase-C-mediated breakdown of phosphoinositides. Ketanserin, a selective 5-HT2 antagonist, was a potent inhibitor of the 5-HT response, with a Ki of 28 nM, indicating that 5-HT is activating receptors of the 5-HT2 type in the platelet. Lysergic acid diethylamide (LSD) and quipazine also caused dose-related increases in inositol phosphate levels, though these were considerably less than those produced by 5-HT. These results show that relatively small changes in phosphoinositide metabolism induced by serotonergic agonists can be investigated in the rabbit platelet, and this cell may therefore be a useful model for the study of some 5-HT receptors.  相似文献   

16.
Several classes of drugs that modify serotonin (5-HT) neurotransmission are either currently used, or are being evaluated for their potential use in the treatment of anxiety, schizophrenia, and depression. 5-HT1A agonists are considered potential anxiolytics, while some atypical antipsychotics are potent 5-HT2 antagonists (and also have modest dopamine D2 affinity). Furthermore, there is a diverse group of serotonergic drugs that may be effective antidepressants. Secretion of ACTH, corticosterone/cortisol, prolactin, renin, oxytocin and vasopressin are stimulated by activation of different 5-HT receptor subtypes, while other neurotransmitter receptors also influence the secretion of these hormones. We compared the receptor binding profiles of 5-HT anxiolytics, antipsychotics and antidepressants with their endocrine effects. These comparisons could aid in understanding both the therapeutic and side effects of these drugs.  相似文献   

17.
Dubé F  Amireault P 《Life sciences》2007,81(25-26):1627-1637
The involvement of neurotransmitters in mammalian female reproductive tissues has been the object of several studies in past decades. This review focuses on new evidence that serotonin (or 5-hydroxytryptamine, 5-HT) may be an important key player, acting locally in mammalian ovaries and female genital tracts where it may influence granulosa and cumulus cells as well as oocytes and early embryos. Pioneering studies reporting 5-HT in ovaries and other female reproductive tissues and cells are now complemented by the identification of specific 5-HT receptor subtypes (5-HT(1D), 5-HT(2A-B) and 5-HT(7)) in granulosa or cumulus cells, oocytes and early embryos. Additional serotonergic players, including the 5-HT transporter (SERT or Slc6A4) expressed in oocytes and embryos, and the 5-HT-producing enzyme tryptophan hydroxylase-1 (TPH1) expressed in cumulus cells, now make up a complete and autonomous local serotonergic network. Direct demonstrations of intracellular Ca(2+) and cAMP signaling by 5-HT in cumulus cells and its capacity to regulate progesterone secretion by granulosa cells further illustrate some of its potential functions in ovarian physiology. Recent evidence shows that mouse mothers with knocked-out TPH1 have embryos with impaired early development, establishing that maternal 5-HT is required for normal embryonic development. This local regulation of reproductive processes by 5-HT in mammals might have derived from better-known, and possibly ancestral, serotonergic networks similarly at play in several primitive animals, and potential implications for human reproduction may also be foreseen. Specific roles played by 5-HT in mammalian reproduction remain to be further investigated, and now span from steroidogenesis and oocyte maturation to early embryonic development.  相似文献   

18.
The influence of the pineal gland on the hypothalamic serotonergic function was examined by studying the effects of long-term pinealectomy (1 month) and melatonin replacement (500 μg/kg; 10 days) on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content as well as on the in vivo 5-HT synthesis rate in discrete hypothalamic nuclei. Pinealectomy was followed by a significant decrease of 5-HT content in the anterior hypothalamic nuclei (AHN) and the ventromedial hypothalamic nuclei (VMHN), and also in 5-HIAA content in lateral (LPON) and medial preoptic nuclei (MPON). The 5-HT synthesis rate, estimated from the accumulation of 5-hydroxytryptophan after blockade of the 1-amino acid decarboxylase activity, were also decreased in the AHN and the paraventricular hypothalamic nuclei (PVHN) of pinealectomized rats. In contrast, an enhanced 5-HT synthesis rate and basal 5-HIAA content were found in the suprachiasmatic nuclei (SCN) after pinealectomy. Daily treatment with melatonin for 10 days reversed most of the effects induced by pinealectomy. Thus, melatonin increased the levels of 5-HT in the AHN and VMHN, and slightly increased the 5-HIAA content in preoptic nuclei. In addition, melatonin increased the 5-HT synthesis rate in the AHN and VMHN, but also in the MPON, VMHN and dorsomedial hypothalamic nuclei (DMHN) where pinealectomy had no effect. By contrast, melatonin treatment did not affect SCN 5-HT synthesis rate, although it decreased 5-HIAA levels. The results demonstrate that melatonin is able to stimulate 5-HT metabolism in most of the hypothalamic areas, but inhibits SCN 5-HT function. Some of the effects of melatonin seems to be exerted by modulating the synthesis of the amine, although melatonin likely also interacts with other regulatory processes of 5-HT function (i.e. release/uptake). The well defined presence of melatonin receptors in the rat SCN, and its absence in other hypothalamic structures, suggest that this may be the mechanism mediating the differential response to endogenous melatonin. Moreover, the larger effect of exogenous melatonin in relation to pinealectomy suggests the presence of melatonin unespecific effects possibly owing to supraphysiological doses. The present findings may be relevant for the mode of action of melatonin and its implication in several endocrine and behavioral functions mediated by serotonergic neurons. Copyright © 1996 Elsevier Science Ltd  相似文献   

19.
The effects of chronic (14 day) administration of the tricyclic antidepressant imipramine, the serotonin-2 (5-HT2) antagonist ketanserin, and the serotonin agonist quipazine on 5-HT2 receptor binding parameters and 5-HT2-mediated behavior were examined in rats with or without prior serotonergic denervation [via 5,7-dihydroxytryptamine (5,7-DHT)] or noradrenergic denervation [via N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)]. Chronic administration of imipramine, ketanserin, or quipazine produced a marked reduction in the number of 5-HT2 binding sites which was accompanied by reductions in the 5-HT2-mediated quipazine-induced head shake response. In animals receiving DSP4 or 5,7-DHT lesions and continuous vehicle treatment, beta-adrenergic receptor binding sites were significantly up-regulated while 5-HT2 receptor binding sites did not change. Imipramine normalized the lesion-induced increases in beta-adrenergic binding observed in DSP4 and 5,7-DHT-lesioned rats but failed to down-regulate beta-adrenergic binding sites below non-lesioned control levels. Chronic imipramine, ketanserin, and quipazine reduced quipazine-induced head shakes and down-regulated 5-HT2 binding sites in rats with noradrenergic denervation. While imipramine, ketanserin, and quipazine all down-regulated 5-HT2 binding sites in animals with serotonergic denervation, only imipramine's ability to reduce quipazine-induced head shakes was attenuated in 5,7-DHT-lesioned rats. The present results suggest that imipramine-induced down-regulation of 5-HT2 receptors may not involve presynaptic 5-HT mechanisms, and imipramine-induced alterations in 5-HT2 sensitivity as reflected in the quipazine-induced head shake may, in part, be influenced by beta-adrenergic receptors.  相似文献   

20.
Inductive signals mediating the differentiation of neural precursors into serotonergic (5-HT) or dopaminergic neurons have not been clarified. We have recently shown that in cell aggregates obtained from rat mesencephalic precursors, reduction of serotonin levels induces a marked increase in generation of dopaminergic neurons. In the present study we treated rat neurospheres with antagonists of the main subtypes of 5-HT receptors, 5-HT transport inhibitors, or 5-HT receptor agonists, and studied the effects on generation of dopaminergic neurons. Cultures treated with Methiothepin (5-HT(1,2,5,6,7) receptor antagonist), the 5-HT(4) receptor antagonist GR113808;67:00-.or the 5-HT(7) receptor antagonist SB 269970 showed a significant increase in generation of dopaminergic cells. Treatment with the 5-HT(1B/1D) antagonist GR 127935, the 5-HT(2) antagonist Ritanserin, the 5-HT transporter inhibitor Fluoxetine, the dopamine and norepinephrine transport inhibitor GBR 12935, or with both inhibitors together, or 5-HT(4) or 5-HT(7) receptor agonists induced significant decreases in generation of dopaminergic cells. Cultures treated with WAY100635 (5-HT(1A) receptor antagonist), the 5-HT(3) receptor antagonist Ondasetron, or the 5-HT(6) receptor antagonist SB 258585 did not show any significant changes. Therefore, 5-HT(4) and 5-HT(7) receptors are involved in the observed serotonin-induced decrease in generation of dopaminergic neurons from proliferating neurospheres of mesencephalic precursors. 5-HT(4) and 5-HT(7) receptors were found in astrocytes and serotonergic cells using double immunolabeling and laser confocal microscopy, and the glial receptors appeared to play a major role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号