首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The gene for N-acetylneuraminate lyase [N-acetylneuraminate pyruvate-lyase; NPL] of Escherichia coli C600 was cloned onto pBR322 as a 9.8 kilobase HindIII fragment of chromosomal DNA and the hybrid plasmid was designated pMK2. The gene in the hybrid plasmid was subcloned in pBR322 as a 1.2 kilobase HindIII-EcoRI fragment and the resultant hybrid plasmid was designated pMK6. NPL activity level was increased more than 5-fold in the pMK6-bearing strain compared with that of the wild type, when the cells were grown on a medium containing inducer (N-acetylneuraminate: NANA). The transformants harbouring pMK6 also showed higher activity even in the absence of inducer. The NPL produced by pMK6-bearing cells was structurally and immunologically the same as that purified from E. coli C600.  相似文献   

2.
From the human fetal brain cDNA library constructed by our lab, a novel variant cDNA of a human gene was successfully cloned and identified. Because the gene has been named N-acetylneuraminate pyruvate lyase (NPL), accordingly we term our splice variant NPL_v2. The cDNA of NPL_v2 has a full-length open reading frame (ORF) from the nucleotide position 320 to 1225 that encodes a protein comprising 301 amino acids. SMART analysis showed that our hypothetical protein has one dihydrodipicolinate synthase (DHDPS) domain. Phosphorylation analysis of the deduced protein show that there are five phosphorylation sites including three "serine" and two "threonine" at the region that are not found in other splice variant. RT-PCR experiment revealed that our splice variant of the gene is mainly expressed in human placenta, liver, kidney, pancreas, spleen, thymus, ovary, small intestine and peripheral blood leukocyte.  相似文献   

3.
The N-acetylneuraminate (NANA) lyase (EC 4.1.3.3) gene from Escherichia coli was self-cloned in E. coli. Transformants were selected by complementation of a NANA lyase-deficient E. coli strain. One clone was found to produce NANA lyase, and it contained a recombinant plasmid, pNAL1, with a 9.0-kilobase HindIII insert. The cloning of the NANA lyase gene resulted in the change from inducible to constitutive production of the enzyme. The level of expression of the NANA lyase gene in E. coli(pNAL1) clones was two- to three-fold higher than that in the fully induced wild-type strains.  相似文献   

4.
The pelB gene encodes pectate lyase B, one of three pectate lyases identified in Erwinia carotovora EC. Pectate lyase B was purified from Escherichia coli containing the pelB gene on a recombinant plasmid. The activity of the protein was optimal at a pH of 8.3. The amino acid composition, N-terminal amino acid sequence, and C-terminal peptide sequence were determined and compared with the polypeptide sequence deduced from the DNA sequence of pelB. Purified pectate lyase B started at amino acid 23 of the predicted sequence, suggesting that a 22-amino-acid leader peptide had been removed. Pectate lyase B of E. carotovora EC and pectate lyase B of E. chrysanthemi EC16 contain 352 and 353 amino acids, respectively (N. T. Keen, S. Tanaki, W. Belser, D. Dahlbeck, and B. Staskawicz, J. Bacteriol. 168:595-606, 1986). The two proteins are 72% homologous on the basis of DNA sequence data, and 75% of the amino acids are identical.  相似文献   

5.
The N-acetylneuraminate (NANA) lyase (EC 4.1.3.3) gene from Escherichia coli was self-cloned in E. coli. Transformants were selected by complementation of a NANA lyase-deficient E. coli strain. One clone was found to produce NANA lyase, and it contained a recombinant plasmid, pNAL1, with a 9.0-kilobase HindIII insert. The cloning of the NANA lyase gene resulted in the change from inducible to constitutive production of the enzyme. The level of expression of the NANA lyase gene in E. coli(pNAL1) clones was two- to three-fold higher than that in the fully induced wild-type strains.  相似文献   

6.
H J Gross  R Brossmer 《FEBS letters》1988,232(1):145-147
We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.  相似文献   

7.
Two plasmids containing the N-acetylneuraminate lyase (NALase) gene (nanA) of Escherichia coli, pNL1 and pNL4, were constructed. Immunoprecipitation analysis indicated that the 35,000-dalton protein encoded in pNL4 was NALase. The synthesis of NALase in E. coli carrying these plasmids was constitutive.  相似文献   

8.
In Escherichia coli, chorismate lyase catalyzes the first step in ubiquinone biosynthesis, the conversion of chorismate to 4-hydroxybenzoate. 4-Hydroxybenzoate is converted to 3-octaprenyl-4-hydroxybenzoate by 4-hydroxybenzoate octaprenyltransferase. These two enzymes are encoded by ubiC and ubiA, respectively, and have been reported to map near one another at 92 min on the E. coli chromosome. We have cloned the ubiCA gene cluster and determined the nucleotide sequence of ubiC and a portion of ubiA. The nucleotide sequence abuts with a previously determined sequence that encodes a large portion of ubiA. ubiC was localized by subcloning, and overproducing plasmids were constructed. Overexpression of ubiC allowed the purification of chorismate lyase to homogeneity, and N-terminal sequence analysis of chorismate lyase unambiguously defined the beginning of the ubiC coding region. Although chorismate lyase showed no significant amino acid sequence similarity to 4-amino-4-deoxychorismate lyase (4-amino-4-deoxychroismate----4-aminobenzoate), the product of E. coli pabC, chorismate lyase overproduction could complement the growth requirement for 4-aminobenzoate of a pabC mutant strain. Of the several enzymes that convert chorismate to intermediates of E. coli biosynthetic pathways, chorismate lyase is the last to be isolated and characterized.  相似文献   

9.
Erwinia carotovora Er produces three extra-cellular pectate lyases (PL I, II, and III). The gene for pectate lyase II (pelII) of E. carotovora Er was cloned and expressed both in Escherichia coli and E. carotovora Er. Localization experiments in E. coli showed that PL II was exclusively in the cytoplasmic space, while PL II was excreted into the culture medium. The complete nucleotides of the pelII gene were sequenced and found to include one open reading frame of 1122 bp coding for a protein of 374 amino acid residues. From comparison of the N-terminal amino acid sequence between the purified PL II and the deduced protein from the nucleotide sequence we reached the conclusion that the mature protein is composed of 352 amino acids with a calculated molecular weight of 38,169 and is preceded by a typical signal sequence of 22 amino acid residues. PL II had 90.1% and 82.9% homologies with PL I and PL III in amino acid sequence, respectively.  相似文献   

10.
The pelA gene, encoding a pectate lyase, from Treponema pectinovorum ATCC 33768 was isolated by heterologous expression of a cosmid library in Escherichia coli. In vitro transposon mutagenesis identified an open reading frame of 1293 bp capable of encoding a protein of 430 amino acids with a predicted amino-terminal signal sequence of 21 amino acids. Analysis of the amino acid sequence suggested that it is a member of the polysaccharide lyase family 10 of which all characterized members show pectate lyase activity. An amino-terminal His-tagged recombinant form of PelA was expressed and purified from E. coli. The recombinant enzyme has characteristics common to other bacterial pectate lyases such as an alkaline pH optimum, dependence on calcium ions for activity, and inhibition by zinc ions.  相似文献   

11.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520-2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4 degrees C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

12.
N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-d-mannosamine (ManNAc). In nature, N-acetylneuraminate lyase occurs mainly in pathogens. However, this paper describes how an N-acetylneuraminate lyase was cloned from the human gut commensal Lactobacillus plantarum WCFS1 (LpNAL), overexpressed, purified, and characterized for the first time. This novel enzyme, which reaches a high expression level (215 mg liter(-1) culture), shows similar catalytic efficiency to the best NALs previously described. This homotetrameric enzyme (132 kDa) also shows high stability and activity at alkaline pH (pH > 9) and good temperature stability (60 to 70°C), this last feature being further improved by the presence of stabilizing additives. These characteristics make LpNAL a promising biocatalyst. When its sequence was compared with that of other, related (real and putative) NALs described in the databases, it was seen that NAL enzymes could be divided into four structural groups and three subgroups. The relation of these subgroups with human and other mammalian NALs is also discussed.  相似文献   

13.
Cystine lyases catalyze the breakdown of l-cystine to thiocysteine, pyruvate, and ammonia. Until now there are no reports of the identification of a plant cystine lyase at a molecular level, and it is not clear what biological role this class of enzymes have in plants. A cystine lyase was isolated from Brassica oleracea (L.), and partial amino acid sequencing allowed the corresponding full-length cDNA (BOCL3) to be cloned. The deduced amino acid sequence of BOCL3 showed highest homology to the deduced amino acid sequences of several Arabidopsis thaliana genes annotated as tyrosine aminotransferase-like, including a coronatine, jasmonic acid, and salt stress-inducible gene, CORI3 (78.8% identity), and the unidentified rooty/superroot1 gene (44.8% identity). A full-length expressed sequence tag clone of CORI3 was obtained and recombinant CORI3 was synthesized in Escherichia coli. Isolated recombinant CORI3 catalyzed a cystine lyase reaction, but no aminotransferase reactions. The present study identifies, for the first time, a cystine lyase from plants at a molecular level and redefines the functional assignment of the only functionally identified member of a group of A. thaliana genes annotated as tyrosine aminotransferase-like.  相似文献   

14.
A structural gene for isocitrate lyase was isolated from a cosmid containing an ace locus of the Escherichia coli chromosome. Cloning and expression under control of the tac promoter in a multicopy plasmid showed that a 1.7-kilobase-pair DNA segment was sufficient for complementation of an aceA deletion mutation and overproduction of isocitrate lyase. DNA sequence analysis of the cloned gene and N-terminal protein sequencing of the cloned and wild-type enzymes revealed an entire aceA gene which encodes a 429-amino-acid residue polypeptide whose C-terminus is histidine. The deduced amino acid sequence for the 47.2-kilodalton subunit of E. coli isocitrate lyase could be aligned with that for the 64.8-kilodalton subunit of the castor bean enzyme with 39% identity except for limited N- and C-terminal regions and a 103-residue stretch that was unique for the plant enzyme and started approximately in the middle of that peptide.  相似文献   

15.
16.
In Escherichia coli, p-aminobenzoate (PABA) is synthesized from chorismate and glutamine in two steps. Aminodeoxychorismate synthase components I and II, encoded by pabB and pabA, respectively, convert chorismate and glutamine to 4-amino-4-deoxychorismate (ADC) and glutamate, respectively. ADC lyase, encoded by pabC, converts ADC to PABA and pyruvate. We reported that pabC had been cloned and mapped to 25 min on the E. coli chromosome (J. M. Green and B. P. Nichols, J. Biol. Chem. 266:12971-12975, 1991). Here we report the nucleotide sequence of pabC, including a portion of a sequence of a downstream open reading frame that may be cotranscribed with pabC. A disruption of pabC was constructed and transferred to the chromosome, and the pabC mutant strain required PABA for growth. The deduced amino acid sequence of ADC lyase is similar to those of Bacillus subtilis PabC and a number of amino acid transaminases. Aminodeoxychorismate lyase purified from a strain harboring an overproducing plasmid was shown to contain pyridoxal phosphate as a cofactor. This finding explains the similarity to the transaminases, which also contain pyridoxal phosphate. Expression studies revealed the size of the pabC gene product to be approximately 30 kDa, in agreement with that predicted by the nucleotide sequence data and approximately half the native molecular mass, suggesting that the native enzyme is dimeric.  相似文献   

17.
The reaction between DTNB and the SH groups of N-acetylneuraminate lyase has been investigated in the presence and absence of pyruvic acid, substrate of the enzyme. It was found that DTNB inactivates N-acetylneuraminate lyase, while pyruvic acid protects the enzyme against this inactivation. When the enzyme was fully inactivated, two SH groups have reacted with DTNB. This result supports previous suggestions, that there is one cystein residue per active site responsible for enzyme activity. In the presence of SDS, approx. 6 SH groups reacted with DTNB suggesting the existence of 3 SH groups per enzyme subunit.  相似文献   

18.
A series of recombinant Escherichia coli strains have been constructed and evaluated for their ability to synthesize p-hydroxybenzoic acid from glucose under fed-batch fermentor conditions. The maximum concentration of p-hydroxybenzoic acid synthesized was 12 g/L and corresponded to a yield of 13% (mol/mol). Synthesis of p-hydroxybenzoic acid began with direction of increased carbon flow into the common pathway of aromatic amino acid biosynthesis. This was accomplished in all constructs with overexpression of a feedback-insensitive isozyme of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase. Expression levels of enzymes in the common pathway of aromatic amino acid biosynthesis were also increased in all constructs to deliver increased carbon flow from the beginning to the end of the common pathway. A previously unreported inhibition of 3-dehydroquinate synthase by L-tyrosine was discovered to be a significant impediment to the flow of carbon through the common pathway. Chorismic acid, the last metabolite of the common pathway, was converted into p-hydroxybenzoic acid by ubiC-encoded chorismate lyase. Constructs differed in the strategy used for overexpression of chorismate lyase and also differed as to whether mutations were present in the host E. coli to inactivate other chorismate-utilizing enzymes. Use of overexpressed chorismate lyase to increase the rate of chorismic acid aromatization was mitigated by attendant decreases in the specific activity of DAHP synthase and feedback inhibition caused by p-hydroxybenzoic acid. The toxicity of p-hydroxybenzoic acid towards E. coli metabolism and growth was also evaluated.  相似文献   

19.
The first complete primary structure of a mammalian sialate-pyruvate lyase, namely of the enzyme from porcine kidney, was elucidated by a combination of different PCR techniques followed by sequencing of the resulting fragments. The primers used were either deduced from four porcine lyase peptides or from an alignment of human and mouse expressed sequence tags (ESTs), which were found to be homologous to already known microbial lyase sequences, and cDNA alone or after ligation with a plasmid vector served as a template. The lyase primary structure consists of 319 amino acids with a calculated protein molecular mass of approximately 35 kDa, which fits well to the value determined for the native enzyme. The porcine lyase sequence made it possible to assemble several ESTs from mouse and man in order to obtain the complete putative lyase genes. The three mammalian sequences reveal a high degree of homology both on the nucleotide (83% of the nucleotides are identical between all three sequences) and on the amino-acid level (72% of the amino acids are identical between all three sequences), and thus form a tightly related group. In contrast, the identity between the lyase primary structures from pig kidney and the microbial enzyme from Clostridium perfringens is much less pronounced (25%). Thirty-one amino acids were found to be absolutely conserved in all lyase sequences. Among them are two amino acids (lysine 173 and tyrosine 143 in the porcine lyase) that are most important for the catalytic reaction. After expression cloning, recombinant enzyme activity was expressed in Escherichia coli BL21(DE3)pLysS, which confirms the identity of the cloned sequence and verifies one of the putative human and murine sequences. After SDS/PAGE of a cell extract of the expression clone, a band of 35kDa was stained on the gel.  相似文献   

20.
C W Lin  S H Chiou 《FEBS letters》1992,311(3):276-280
delta-Crystallin is a major lens protein present in the avian and reptilian lenses. To facilitate the cloning of the delta-crystallin gene, cDNA was constructed from the poly(A)+ RNA of pigeon lenses, amplified by the polymerase chain reaction (PCR). The PCR product was then subcloned into pUC19 vector and transformed into E. coli strain JM109. Plasmids purified from the positive clones were prepared for nucleotide sequencing by the dideoxynucleotide chain-termination method. Sequencing two clones, containing 1.4 kb DNA inserts coding for delta-crystallin allowed the construction of a complete, full-length reading frame of 1,417 bp covering a deduced protein sequence of 466 amino acids, including the universal translation-initiating methionine. The pigeon delta-crystallin shows 88, 83 and 69% sequence identity to duck delta 2, chicken delta 1 crystallins and human argininosuccinate lyase respectively. It is also shown that, in contrast to duck delta 2 crystallin which has a high argininosuccinate lyase activity, pigeon delta-crystallin appears to contain very low activity of this enzyme, despite the fact that they share a highly homologous structure. A structural comparison of delta-crystallins with or without enzymatic activity suggested several amino acid replacements which may account for the loss of argininosuccinate lyase activity in the lenses of certain avian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号