首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We revisit the usual conditional likelihood for stratum-matched case-control studies and consider three alternatives that may be more appropriate for family-based gene-characterization studies: First, the prospective likelihood, that is, Pr(D/G,A second, the retrospective likelihood, Pr(G/D); and third, the ascertainment-corrected joint likelihood, Pr(D,G/A). These likelihoods provide unbiased estimators of genetic relative risk parameters, as well as population allele frequencies and baseline risks. The parameter estimates based on the retrospective likelihood remain unbiased even when the ascertainment scheme cannot be modeled, as long as ascertainment only depends on families' phenotypes. Despite the need to estimate additional parameters, the prospective, retrospective, and joint likelihoods can lead to considerable gains in efficiency, relative to the conditional likelihood, when estimating genetic relative risk. This is true if baseline risks and allele frequencies can be assumed to be homogeneous. In the presence of heterogeneity, however, the parameter estimates assuming homogeneity can be seriously biased. We discuss the extent of this problem and present a mixed models approach for providing consistent parameter estimates when baseline risks and allele frequencies are heterogeneous. The efficiency gains of the mixed-model prospective, retrospective, and joint likelihoods relative to the efficiency of conditional likelihood are small in the situations presented here.  相似文献   

2.
K Y Liang 《Biometrics》1987,43(2):289-299
A class of estimating functions is proposed for the estimation of multivariate relative risk in stratified case-control studies. It reduces to the well-known Mantel-Haenszel estimator when there is a single binary risk factor. Large-sample properties of the solutions to the proposed estimating equations are established for two distinct situations. Efficiency calculations suggest that the proposed estimators are nearly fully efficient relative to the conditional maximum likelihood estimator for the parameters considered. Application of the proposed method to family data and longitudinal data, where the conditional likelihood approach fails, is discussed. Two examples from case-control studies and one example from a study on familial aggregation are presented.  相似文献   

3.
We present a conditional likelihood approach for testing linkage disequilibrium in nuclear families having multiple affected offspring. The likelihood, conditioned on the identity-by-descent (IBD) structure of the sibling genotypes, is unaffected by familial correlation in disease status that arises from linkage between a marker locus and the unobserved trait locus. Two such conditional likelihoods are compared: one that conditions on IBD and phase of the transmitted alleles and a second which conditions only on IBD of the transmitted alleles. Under the log-additive model, the first likelihood is equivalent to the allele-counting methods proposed in the literature. The second likelihood is valid under the added assumption of equal male and female recombination fractions. In a simulation study, we demonstrated that in sibships having two or three affected siblings the score test from each likelihood had the correct test size for testing disequilibrium. They also led to equivalent power to detect linkage disequilibrium at the 5% significance level.  相似文献   

4.
S. Xu 《Genetics》1996,144(4):1951-1960
The proportion of alleles identical by descent (IBD) determines the genetic covariance between relatives, and thus is crucial in estimating genetic variances of quantitative trait loci (QTL). However, IBD proportions at QTL are unobservable and must be inferred from marker information. The conventional method of QTL variance analysis maximizes the likelihood function by replacing the missing IBDs by their conditional expectations (the expectation method), while in fact the full likelihood function should take into account the conditional distribution of IBDs (the distribution method). The distribution method for families of more than two sibs has not been obvious because there are n(n - 1)/2 IBD variables in a family of size n, forming an n X n symmetrical matrix. In this paper, I use four binary variables, where each indicates the event that an allele from one of the four grandparents has passed to the individual. The IBD proportion between any two sibs is then expressed as a function of the indicators. Subsequently, the joint distribution of the IBD matrix is derived from the distribution of the indicator variables. Given the joint distribution of the unknown IBDs, a method to compute the full likelihood function is developed for families of arbitrary sizes.  相似文献   

5.
Liang Li  Bo Hu  Tom Greene 《Biometrics》2009,65(3):737-745
Summary .  In many longitudinal clinical studies, the level and progression rate of repeatedly measured biomarkers on each subject quantify the severity of the disease and that subject's susceptibility to progression of the disease. It is of scientific and clinical interest to relate such quantities to a later time-to-event clinical endpoint such as patient survival. This is usually done with a shared parameter model. In such models, the longitudinal biomarker data and the survival outcome of each subject are assumed to be conditionally independent given subject-level severity or susceptibility (also called frailty in statistical terms). In this article, we study the case where the conditional distribution of longitudinal data is modeled by a linear mixed-effect model, and the conditional distribution of the survival data is given by a Cox proportional hazard model. We allow unknown regression coefficients and time-dependent covariates in both models. The proposed estimators are maximizers of an exact correction to the joint log likelihood with the frailties eliminated as nuisance parameters, an idea that originated from correction of covariate measurement error in measurement error models. The corrected joint log likelihood is shown to be asymptotically concave and leads to consistent and asymptotically normal estimators. Unlike most published methods for joint modeling, the proposed estimation procedure does not rely on distributional assumptions of the frailties. The proposed method was studied in simulations and applied to a data set from the Hemodialysis Study.  相似文献   

6.
An important issue in the phylogenetic analysis of nucleotide sequence data using the maximum likelihood (ML) method is the underlying evolutionary model employed. We consider the problem of simultaneously estimating the tree topology and the parameters in the underlying substitution model and of obtaining estimates of the standard errors of these parameter estimates. Given a fixed tree topology and corresponding set of branch lengths, the ML estimates of standard evolutionary model parameters are asymptotically efficient, in the sense that their joint distribution is asymptotically normal with the variance–covariance matrix given by the inverse of the Fisher information matrix. We propose a new estimate of this conditional variance based on estimation of the expected information using a Monte Carlo sampling (MCS) method. Simulations are used to compare this conditional variance estimate to the standard technique of using the observed information under a variety of experimental conditions. In the case in which one wishes to estimate simultaneously the tree and parameters, we provide a bootstrapping approach that can be used in conjunction with the MCS method to estimate the unconditional standard error. The methods developed are applied to a real data set consisting of 30 papillomavirus sequences. This overall method is easily incorporated into standard bootstrapping procedures to allow for proper variance estimation.  相似文献   

7.
Methods for the analysis of unmatched case-control data based on a finite population sampling model are developed. Under this model, and the prospective logistic model for disease probabilities, a likelihood for case-control data that accommodates very general sampling of controls is derived. This likelihood has the form of a weighted conditional logistic likelihood. The flexibility of the methods is illustrated by providing a number of control sampling designs and a general scheme for their analyses. These include frequency matching, counter-matching, case-base, randomized recruitment, and quota sampling. A study of risk factors for childhood asthma illustrates an application of the counter-matching design. Some asymptotic efficiency results are presented and computational methods discussed. Further, it is shown that a 'marginal' likelihood provides a link to unconditional logistic methods. The methods are examined in a simulation study that compares frequency and counter-matching using conditional and unconditional logistic analyses and indicate that the conditional logistic likelihood has superior efficiency. Extensions that accommodate sampling of cases and multistage designs are presented. Finally, we compare the analysis methods presented here to other approaches, compare counter-matching and two-stage designs, and suggest areas for further research.To whom correspondence should be addressed.  相似文献   

8.
Estimation of parameters in a genetic model can be very difficult using likelihood theory when there is no concise functional form for the likelihood function. An alternative method based on fitting the characteristic function is suggested and this method may be used on data with consistent familial composition.  相似文献   

9.
Yuan Y  Little RJ 《Biometrics》2009,65(2):478-486
Summary .  Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process and dropout process is factorized into the marginal distribution of random effects, the dropout process conditional on random effects, and the outcome process conditional on dropout patterns and random effects. MEHMs combine features of selection models and pattern-mixture models: they directly model the missingness process as in selection models, and enjoy the computational simplicity of pattern-mixture models. The MEHM provides a generalization of shared-parameter models (SPMs) by relaxing the conditional independence assumption between the measurement process and the dropout process given random effects. Because SPMs are nested within MEHMs, likelihood ratio tests can be constructed to evaluate the conditional independence assumption of SPMs. We use data from a pediatric AIDS clinical trial to illustrate the models.  相似文献   

10.
Two-stage models for the analysis of cancer screening data   总被引:2,自引:0,他引:2  
R Brookmeyer  N E Day 《Biometrics》1987,43(3):657-669
Methods are proposed for the analysis of the natural history of disease from screening data when it cannot be assumed that untreated preclinical disease always progresses to clinical disease. The methodology is based on a two-stage model for preclinical disease in which stage 1 lesions may or may not progress to stage 2, but all stage 2 lesions progress to clinical disease. The focus is on joint estimation of the total preclinical duration and the sensitivity of the screening test. A partial likelihood is proposed for the analysis of prospectively collected screening data, and an analogous conditional likelihood is proposed for retrospective data. Some special cases for the joint sojourn distribution of the two stages are considered, including the independent model and limiting models where the duration of stage 2 is short relative to stage 1. The methods are applied to a case-control study of cervical cancer screening in Northeast Scotland.  相似文献   

11.
We study bias-reduced estimators of exponentially transformed parameters in general linear models (GLMs) and show how they can be used to obtain bias-reduced conditional (or unconditional) odds ratios in matched case-control studies. Two options are considered and compared: the explicit approach and the implicit approach. The implicit approach is based on the modified score function where bias-reduced estimates are obtained by using iterative procedures to solve the modified score equations. The explicit approach is shown to be a one-step approximation of this iterative procedure. To apply these approaches for the conditional analysis of matched case-control studies, with potentially unmatched confounding and with several exposures, we utilize the relation between the conditional likelihood and the likelihood of the unconditional logit binomial GLM for matched pairs and Cox partial likelihood for matched sets with appropriately setup data. The properties of the estimators are evaluated by using a large Monte Carlo simulation study and an illustration of a real dataset is shown. Researchers reporting the results on the exponentiated scale should use bias-reduced estimators since otherwise the effects can be under or overestimated, where the magnitude of the bias is especially large in studies with smaller sample sizes.  相似文献   

12.
I here consider the question of when to formulate a likelihood over the whole data set, as opposed to conditioning the likelihood on subsets of the data (i.e., joint vs. conditional likelihoods). I show that when certain conditions are met, these two likelihoods are guaranteed to be equivalent, and thus that it is generally preferable to condition on subsets, since that likelihood is mathematically and computationally simpler. However, I show that when these conditions are not met, conditioning on subsets of the data is equivalent to introducing additional df into our genetic model, df that we may not have been aware of. I discuss the implications of these facts for ascertainment corrections and other genetic problems.  相似文献   

13.
Bartolucci F  Forcina A 《Biometrics》2001,57(3):714-719
In this article, we show that, if subjects are assumed to be homogeneous within a finite set of latent classes, the basic restrictions of the Rasch model (conditional independence and unidimensionality) can be relaxed in a flexible way by simply adding appropriate columns to a basic design matrix. When discrete covariates are available so that subjects may be classified into strata, we show how a joint modeling approach can achieve greater parsimony. Parameter estimates may be obtained by maximizing the conditional likelihood (given the total number of captures) with a combined use of the EM and Fisher scoring algorithms. We also discuss a technique for obtaining confidence intervals for the size of the population under study based on the profile likelihood.  相似文献   

14.
Cook RJ  Ng ET  Meade MO 《Biometrics》2000,56(4):1109-1117
We describe a method for making inferences about the joint operating characteristics of multiple diagnostic tests applied longitudinally and in the absence of a definitive reference test. Log-linear models are adopted for the classification distributions conditional on the latent state, where inclusion of appropriate interaction terms accommodates conditional dependencies among the tests. A marginal likelihood is constructed by marginalizing over a latent two-state Markov process. Specific latent processes we consider include a first-order Markov model, a second-order Markov model, and a time-nonhomogeneous Markov model, although the method is described in full generality. Adaptations to handle missing data are described. Model diagnostics are considered based on the bootstrap distribution of conditional residuals. The methods are illustrated by application to a study of diffuse bilateral infiltrates among patients in intensive care wards in which the objective was to assess aspects of validity and clinical agreement.  相似文献   

15.
Yang J  Lin S 《Biometrics》2012,68(2):477-485
Genetic imprinting and in utero maternal effects are causes of parent-of-origin effect but they are confounded with each other. Tests attempting to detect only one of these effects would have a severely inflated type I error rate if the assumption of the absence of the other effect is violated. Some existing methods avoid the potential confounding by modeling imprinting and in utero maternal effect simultaneously. However, these methods are not amendable to extended families, which are commonly recruited in family-based studies. In this article, we propose a likelihood approach for detecting imprinting and maternal effects (LIME) using general pedigrees from prospective family-based association studies. LIME formulates the probability of familial genotypes without the Hardy-Weinberg equilibrium assumption by introducing a novel concept called conditional mating type between marry-in founders and their nonfounder spouses. Further, a logit link is used to model the penetrance. To deal with the issue of incomplete pedigree genotypic data, LIME imputes the unobserved genotypes implicitly by considering all compatible ones conditional on the observed genotypes. We carried out a simulation study to evaluate the relative power and type I error of LIME and two existing methods. The results show that the use of extended pedigree data, even with incomplete information, can achieve much greater power than using nuclear families for detecting imprinting and in utero maternal effects without leading to inflated type I error rates.  相似文献   

16.
Data incongruence and the problem of avian louse phylogeny   总被引:2,自引:0,他引:2  
Smith, V. S., Page, R. D. M. & Johnson, K. P. (2004). Data incongruence and the problem of avian louse phylogeny. — Zoologica Scripta, 33 , 239 –259.
Recent studies based on different types of data (i.e. morphological and molecular) have supported conflicting phylogenies for the genera of avian feather lice (Ischnocera: Phthiraptera). We analyse new and published data from morphology and from mitochondrial (12S rRNA and COI) and nuclear (EF1-α) genes to explore the sources of this incongruence and explain these conflicts. Character convergence, multiple substitutions at high divergences, and ancient radiation over a short period of time have contributed to the problem of resolving louse phylogeny with the data currently available. We show that apparent incongruence between the molecular datasets is largely attributable to rate variation and nonstationarity of base composition. In contrast, highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We consider ways in which biases in the sequence data could be misleading, using several maximum likelihood models and LogDet corrections. The hierarchical structure of the data is explored using likelihood mapping and SplitsTree methods. Ultimately, we concede there is strong discordance between the molecular and morphological data and apply the conditional combination approach in this case. We conclude that higher level phylogenetic relationships within avian Ischnocera remain extremely problematic. However, consensus between datasets is beginning to converge on a stable phylogeny for avian lice, at and below the familial rank.  相似文献   

17.
For complex diseases, recent interest has focused on methods that take into account joint effects at interacting loci. Conditioning on effects of disease loci at known locations can lead to increased power to detect effects at other loci. Moreover, use of joint models allows investigation of the etiologic mechanisms that may be involved in the disease. Here we present a method for simultaneous analysis of the joint genetic effects at several loci that uses affected relative pairs. The method is a generalization of the two-locus LOD-score analysis for affected sib pairs proposed by Cordell et al. We derive expressions for the relative risk, lambdaR, to a relative of an affected individual, in terms of the additive and epistatic components of variance at an arbitrary number of disease loci, and we show how these can be used to fit a likelihood model to the identity-by-descent sharing among pairs of affected relatives in extended pedigrees. We implement the method by use of a stepwise strategy in which, given evidence of linkage to disease at m-1 locations on the genome, we calculate the conditional likelihood curve across the genome for an mth disease locus, using multipoint methods similar to those proposed by Kruglyak et al. We evaluate the properties of our method by use of simulated data and present an application to real data from families with insulin-dependent diabetes mellitus.  相似文献   

18.
Chen J  Rodriguez C 《Biometrics》2007,63(4):1099-1107
Genetic epidemiologists routinely assess disease susceptibility in relation to haplotypes, that is, combinations of alleles on a single chromosome. We study statistical methods for inferring haplotype-related disease risk using single nucleotide polymorphism (SNP) genotype data from matched case-control studies, where controls are individually matched to cases on some selected factors. Assuming a logistic regression model for haplotype-disease association, we propose two conditional likelihood approaches that address the issue that haplotypes cannot be inferred with certainty from SNP genotype data (phase ambiguity). One approach is based on the likelihood of disease status conditioned on the total number of cases, genotypes, and other covariates within each matching stratum, and the other is based on the joint likelihood of disease status and genotypes conditioned only on the total number of cases and other covariates. The joint-likelihood approach is generally more efficient, particularly for assessing haplotype-environment interactions. Simulation studies demonstrated that the first approach was more robust to model assumptions on the diplotype distribution conditioned on environmental risk variables and matching factors in the control population. We applied the two methods to analyze a matched case-control study of prostate cancer.  相似文献   

19.
Mayer M 《Genetical research》2004,84(3):145-152
As an alternative to multiple-interval mapping a two-step moment method was recently proposed to map linked multiple quantitative trait loci (QTLs). The advantage of this moment method was supposed to be its simplicity and computational efficiency, especially in detecting closely linked QTLs within a marker bracket, but also in mapping QTLs in different marker intervals. Using simulations it is shown that the two-step moment method may give poor results compared with multiple-interval mapping, irrespective of whether the QTLs are in the same or in different marker intervals, especially if linked QTLs are in repulsion. The criteria of comparison are number of identified QTLs, likelihood ratio test statistics, means and empirical standard errors of the QTL position and QTL effects estimates, and the accuracy of the residual variance estimates. Further, the joint conditional probabilities of QTL genotypes for two putative QTLs within a marker interval were derived and compared with the unmodified approach ignoring the non-independence of the conditional probabilities.  相似文献   

20.
Follmann D  Nason M 《Biometrics》2011,67(3):1127-1134
Summary Quantal bioassay experiments relate the amount or potency of some compound; for example, poison, antibody, or drug to a binary outcome such as death or infection in animals. For infectious diseases, probit regression is commonly used for inference and a key measure of potency is given by the IDP , the amount that results in P% of the animals being infected. In some experiments, a validation set may be used where both direct and proxy measures of the dose are available on a subset of animals with the proxy being available on all. The proxy variable can be viewed as a messy reflection of the direct variable, leading to an errors‐in‐variables problem. We develop a model for the validation set and use a constrained seemingly unrelated regression (SUR) model to obtain the distribution of the direct measure conditional on the proxy. We use the conditional distribution to derive a pseudo‐likelihood based on probit regression and use the parametric bootstrap for statistical inference. We re‐evaluate an old experiment in 21 monkeys where neutralizing antibodies (nABs) to HIV were measured using an old (proxy) assay in all monkeys and with a new (direct) assay in a validation set of 11 who had sufficient stored plasma. Using our methods, we obtain an estimate of the ID1 for the new assay, an important target for HIV vaccine candidates. In simulations, we compare the pseudo‐likelihood estimates with regression calibration and a full joint likelihood approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号