首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Axonal transport of neurofilaments (NFs) has long been considered to be regulated by phosphorylation. We present evidence that in optic axons of normal mice, the rate of NF axonal transport is inversely correlated with the NF phosphorylation state. In addition to 200 kDa NF-H and 145 kDa NF-M, axonal cytoskeletons from CNS contained a range of phospho-variants of NF-H migrating between 160-200 kDa, and of NF-M migrating at 97-145 kDa. While 160 kDa phospho-variants of NF-H have been well characterized, we confirmed the identity of the previously-described 97 kDa species as a hypophospho-variant of NF-M since (1) pulse-chase metabolic labeling confirmed the 97 kDa species to be a new synthesis product that was converted by phosphorylation over time into a form migrating at 145 kDa, (2) the 97 kDa protein reacted with multiple NF-M antibodies, including one specific for hypophosphorylated NF-M, and (3) dephosphorylation converted NF-M isoforms to 97 kDa. Autoradiographic analyses following metabolic radiolabeling demonstrated that hypophosphorylated NF-H and NF-M isoforms underwent substantially more rapid transport in situ than did extensively phosphorylated isoforms, while NF-H subunits bearing a developmentally delayed C-terminal phospho-epitope transported at a rate slower than that of total 200 kDa NF-H. Differential transport of phospho-variants also highlights that these variants are not homogeneously distributed among NFs, but are segregated to some extent among distinct, although probably overlapping, NF populations, indicating that axonal NFs are not homogeneous with respect to phosphorylation state.  相似文献   

2.
To clarify the role of the neurofilament (NF) medium (NF-M) and heavy (NF-H) subunits, we generated mice with targeted disruption of both NF-M and NF-H genes. The absence of the NF-M subunit resulted in a two- to threefold reduction in the caliber of large myelinated axons, whereas the lack of NF-H subunits had little effect on the radial growth of motor axons. In NF-M-/- mice, the velocity of axonal transport of NF light (NF-L) and NF-H proteins was increased by about two-fold, whereas the steady-state levels of assembled NF-L were reduced. Although the NF-M or NF-H subunits are each dispensable for the formation of intermediate filaments, the absence of both subunits in double NF-M; NF-H knockout mice led to a scarcity of intermediate filament structures in axons and to a marked approximately twofold increase in the number of microtubules. Protein analysis indicated that the levels of NF-L and alpha-internexin proteins were reduced dramatically throughout the nervous system. Immunohistochemistry of spinal cord from the NF-M-/-;NF-H-/- mice revealed enhanced NF-L staining in the perikaryon of motor neurons but a weak NF-L staining in axons. In addition, axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed after 30 days very low levels of newly synthesized NF-L proteins in the sciatic nerve of NF-M-/-;NF-H-/- mice. The combined results demonstrate a requirement of the high-molecular-weight subunits for the assembly of type IV intermediate filament proteins and for the efficient translocation of NF-L proteins into the axonal compartment.  相似文献   

3.
Subunit composition of neurofilaments specifies axonal diameter   总被引:6,自引:1,他引:5       下载免费PDF全文
《The Journal of cell biology》1996,133(5):1061-1069
Neurofilaments (NFs), which are composed of NF-L, NF-M, and NF-H, are required for the development of normal axonal caliber, a property that in turn is a critical determinant of axonal conduction velocity. To investigate how each subunit contributes to the radial growth of axons, we used transgenic mice to alter the subunit composition of NFs. Increasing each NF subunit individually inhibits radial axonal growth, while increasing both NF-M and NF-H reduces growth even more severely. An increase in NF-L results in an increased filament number but reduced interfilament distance. Conversely, increasing NF-M, NF-H, or both reduces filament number, but does not alter nearest neighbor interfilament distance. Only a combined increase of NF-L with either NF- M or NF-H promotes radial axonal growth. These results demonstrate that both NF-M and NF-H play complementary roles with NF-L in determining normal axonal calibers.  相似文献   

4.
Neurofilaments (NFs) are prominent components of large myelinated axons. Previous studies have suggested that NF number as well as the phosphorylation state of the COOH-terminal tail of the heavy neurofilament (NF-H) subunit are major determinants of axonal caliber. We created NF-H knockout mice to assess the contribution of NF-H to the development of axon size as well as its effect on the amounts of low and mid-sized NF subunits (NF-L and NF-M respectively). Surprisingly, we found that NF-L levels were reduced only slightly whereas NF-M and tubulin proteins were unchanged in NF-H–null mice. However, the calibers of both large and small diameter myelinated axons were diminished in NF-H–null mice despite the fact that these mice showed only a slight decrease in NF density and that filaments in the mutant were most frequently spaced at the same interfilament distance found in control. Significantly, large diameter axons failed to develop in both the central and peripheral nervous systems. These results demonstrate directly that unlike losing the NF-L or NF-M subunits, loss of NF-H has only a slight effect on NF number in axons. Yet NF-H plays a major role in the development of large diameter axons.  相似文献   

5.
A reduction in neurofilament (NF) protein synthesis and changes in their phosphorylation state are observed during nerve regeneration. To investigate how such metabolic changes are involved in the reorganization of the axonal cytoskeleton, we studied the injury-induced changes in the solubility and axonal transport of NF proteins as well as their phosphorylation states in the rat sciatic nerve. In the control nerve, 15-25% of high-molecular-mass NF subunit (NF-H) was recovered in the 1% Triton-soluble fraction when fractionated in the presence of phosphatase inhibitors. After a complete loss of NF proteins distal to the injury site (70-75 mm from the spinal cord) 1 week after injury, NF-H detected in the regenerating sprouts at 2 weeks or later exhibited higher solubility (>50%) and lower C-terminal phosphorylation level than NF-H in the control nerve. Solubility increase was also apparent with L-[35S]methionine-labeled NF-H that was in transit in the proximal axon at the time of injury. The low-molecular-mass subunit remained in the insoluble fraction in both the normal and the regenerating nerves, indicating that selective solubilization of NF-H rather than total filament disassembly occurs during regeneration.  相似文献   

6.
Axonal maturation in situ is accompanied by the transition of neurofilaments (NFs) comprised of only NF-M and NF-L to those also containing NF-H. Since NF-H participates in interactions of NFs with each other and with other cytoskeletal constituents, its appearance represents a critical event in the stabilization of axons that accompanies their maturation. Whether this transition is effected by replacement of "doublet" NFs with "triplet" NFs, or by incorporation of NF-H into existing doublet NFs is unclear. To address this issue, we examined the distribution of NF subunit immunoreactivity within axonal cytoskeletons of differentiated NB2a/d1 cell and DRG neurons between days 3-7 of outgrowth. Endogenous immunoreactivity either declined in a proximal-distal gradient or was relatively uniform along axons. This distribution was paralleled by microinjected biotinylated NF-L. By contrast, biotinylated NF-H displayed a bipolar distribution, with immunoreactivity concentrated within the proximal- and distal-most axonal regions. Proximal biotinylated NF-H accumulation paralleled that of endogenous NF immunoreactivity; however, distal-most biotinylated NF-H accumulation dramatically exceeded that of endogenous NFs and microinjected NF-L. This phenomenon was not due to co-polymerization of biotin-H with vimentin or alpha-internexin. This phenomenon declined with continued time in culture. These data suggest that NF-H can incorporate into existing cytoskeletal structures, and therefore suggest that this mechanism accounts for at least a portion of the accumulation of triplet NFs during axonal maturation. Selective NF-H accumulation into existing cytoskeletal structures within the distal-most region may provide de novo cytoskeletal stability for continued axon extension and/or stabilization.  相似文献   

7.
Neurofilaments (NFs) are prominent components of large myelinated axons and probably the most abundant of neuronal intermediate filament proteins. Here we show that mice with a null mutation in the mid-sized NF (NF-M) subunit have dramatically decreased levels of light NF (NF-L) and increased levels of heavy NF (NF-H). The calibers of both large and small diameter axons in the central and peripheral nervous systems are diminished. Axons of mutant animals contain fewer neurofilaments and increased numbers of microtubules. Yet the mice lack any overt behavioral phenotype or gross structural defects in the nervous system. These studies suggest that the NF-M subunit is a major regulator of the level of NF-L and that its presence is required to achieve maximal axonal diameter in all size classes of myelinated axons.Neurofilaments (NFs)1 are the most prominent cytoskeletal components in large myelinated axons and probably the most abundant and widely expressed of neuronal intermediate filament (IF) proteins. In mammals, NFs are composed of three proteins termed light (NF-L), mid-sized (NF-M), and heavy (NF-H) NFs. These proteins are encoded by separate genes (17, 21, 27) and have apparent molecular weights of ∼68,000, 150,000, and 200,000, respectively, when separated on SDS-PAGE gels.Like all IFs, NF proteins contain a relatively well-conserved α helical rod domain of ∼310 amino acids with variable NH2-terminal and COOH-terminal regions (33). In NFs, the COOH-terminal domains are greatly extended relative to other IFs and contain a glutamic acid–rich region of unknown significance and in NF-M and NF-H a series of lysine-serine-proline-valine (KSPV) repeats (21, 27) which are major sites of phosphorylation in both proteins. In axons, NFs form bundles of 10-nm diameter “core filaments” with sidearms consisting of phosphorylated COOH-terminal tail sequences of NF-M and NF-H (12, 13, 26, 29) that have been thought to extend and maintain the spacing between filaments (4). Similar sidearm extensions are not found in IFs composed of other IF proteins such as desmin, glial fibrillary acidic protein, or vimentin. In NFs assembled in vitro, all three subunits appear to be incorporated into core filaments (12, 26). Thus, current models of NF assembly suggest that NF-M and NF-H are the major components of sidearm extensions and are anchored to a core of NF-L via their central rod domains.Although much is known about NF structure and assembly, questions remain concerning NF function. A primarily structural role for NFs is suggested by their prominence in large axons (41). Small unmyelinated axons contain few NFs (9) and some small neurons lack morphologically identifiable NFs (3, 32, 38). Most dendrites contain few NFs and only in dendrites of large neurons such as motor neurons are NFs numerous (41).A role for NFs as a major determinant of axonal diameter has long been suspected from the correlation between NF content in axonal cross sections and axonal caliber (16). This correlation persists during axonal degeneration and regeneration (14) and changes in NF transport correlate temporally with alterations in the caliber of axons in regenerating nerves (15). Additionally, fewer NFs occur at nodes of Ranvier where axonal diameter is reduced (1), and certain NF epitopes are found only in regions where maximal axonal caliber has developed (6).Several animal models have supported a role for NFs in establishing axonal diameter. One is a Japanese quail (Quiverer) with a spontaneous mutation in NF-L that generates a truncated protein incapable of forming NFs (31). Homozygous mutants contain no axonal NFs and exhibit a mild generalized quivering. In these animals, radial growth of myelinated axons is severely attenuated (44) with a consequent reduction in axonal conduction velocity (37). In transgenic mice, Eyer and Petersen (8) expressed an NF-H/β-galactosidase fusion protein in which the COOH terminus of NF-H was replaced by β-galactosidase. NF inclusions were found in the perikarya of neurons and the resulting NF aggregates blocked all NF transport into axons resulting in axons with reduced calibers. More recently, Zhu et al. (45) have shown that mice lacking NFs due to a targeted disruption of the NF-L gene have diminished axonal calibers and delayed maturation of regenerating myelinated axons.Although these models clearly suggest a role for NFs in establishing axonal diameter, they contribute only limited information concerning the roles of the individual NF subunits. During development, NF-L and NF-M are coexpressed initially whereas NF-H appears later (4). Studies in transgenic mice have found that overexpressing mouse NF-L leads to an increased density of NFs, but no increase in axonal caliber (25). More recently, Xu et al. (43) overexpressed each of the mouse NF subunits either individually or in various combinations. They found that only when NF-L was overexpressed in combination with either NF-M or NF-H was axonal growth significantly increased. Interestingly, when NF-M and NF-H were overexpressed alone or in combination with one another, radial axonal growth was inhibited.It also remains incompletely understood how NF stoichiometries are regulated and the degree to which any one NF subunit is dominant in this regulation. Recently, conflicting data has appeared concerning the role of NF-M in regulating NF stoichiometries. We found that overexpression of human NF-M in transgenic mice increases the levels of endogenous mouse NF-L protein and decreases the extent of phosphorylation of NF-H (39). These results imply that NF-M may play a dominant role in regulating the levels of NF-L protein, the relative stoichiometry of NF subunits, and the phosphorylation status of NF-H. However different results were obtained by Wong et al. (40) who found that overexpression of mouse NF-M in transgenic mice did not effect the levels of axonal NF-L, and although it reduced NF-H, it did not effect its phosphorylation status.To further address these issues we generated mice bearing a null mutation in the mouse NF-M gene. Here we describe the effects of this mutation on nervous system development with particular reference to the role of the NF-M subunit in specifying axonal diameter and its effect on levels of the remaining NF subunits.  相似文献   

8.
To test the hypothesis that fast anterograde molecular motor proteins power the slow axonal transport of neurofilaments (NFs), we used homologous recombination to generate mice lacking the neuronal-specific conventional kinesin heavy chain, KIF5A. Because null KIF5A mutants die immediately after birth, a synapsin-promoted Cre-recombinase transgene was used to direct inactivation of KIF5A in neurons postnatally. Three fourths of such mutant mice exhibited seizures and death at around 3 wk of age; the remaining animals survived to 3 mo or longer. In young mutant animals, fast axonal transport appeared to be intact, but NF-H, as well as NF-M and NF-L, accumulated in the cell bodies of peripheral sensory neurons accompanied by a reduction in sensory axon caliber. Older animals also developed age-dependent sensory neuron degeneration, an accumulation of NF subunits in cell bodies and a reduction in axons, loss of large caliber axons, and hind limb paralysis. These data support the hypothesis that a conventional kinesin plays a role in the microtubule-dependent slow axonal transport of at least one cargo, the NF proteins.  相似文献   

9.
《The Journal of cell biology》1995,130(6):1413-1422
The carboxy-terminal tail domains of neurofilament subunits neurofilament NF-M and NF-H have been postulated to be responsible for the modulation of axonal caliber. To test how subunit composition affects caliber, transgenic mice were generated to increase axonal NF- M. Total neurofilament subunit content in motor and sensory axons remained essentially unchanged, but increases in NF-M were offset by proportionate decreases in both NF-H and axonal cross-sectional area. Increase in NF-M did not affect the level of phosphorylation of NF-H. This indicates that (a) in vivo NF-H and NF-M compete either for coassembly with a limiting amount of NF-L or as substrates for axonal transport, and (b) NF-H abundance is a primary determinant of axonal caliber. Despite inhibition of radial growth, increase in NF-M and reduction in axonal NF-H did not affect nearest neighbor spacing between neurofilaments, indicating that cross-bridging between nearest neighbors does not play a crucial role in radial growth. Increase in NF- M did not result in an overt phenotype or neuronal loss, although filamentous swellings in perikarya and proximal axons of motor neurons were frequently found.  相似文献   

10.
Axonal transport of neurofilament (NFs) is considered to be regulated by phosphorylation. While existing evidence for this hypothesis is compelling, supportive studies have been largely restricted to correlative evidence and/or experimental systems involving mutants. We tested this hypothesis in retinal ganglion cells of normal mice in situ by comparing subunit transport with regional phosphorylation state coupled with inhibition of phosphatases. NF subunits were radiolabeled by intravitreal injection of 35S-methionine. NF axonal transport was monitored by following the location of the peak of radiolabeled subunits immunoprecipitated from 9x1.1 mm segments of optic axons. An abrupt decline transport rate was observed between days 1 and 6, which corresponded to translocation of the peak of radiolabeled subunits from axonal segment 2 into segment 3. Notably, this is far downstream from the only caliber increase of optic axons at 150 mu from the retina. Immunoblot analysis demonstrated a unique threefold increase between segments 2 and 3 in levels of a "late-appearing" C-terminal NF-H phospho-epitope (RT97). Intravitreal injection of the phosphatase inhibitor okadaic acid increased RT97 immunoreactivity within retinas and proximal axons, and markedly decreased NF transport rate out of retinas and proximal axons. These findings provide in situ experimental evidence for regulation of NF transport by site-specific phosphorylation.  相似文献   

11.
Neurofilaments (NFs) are important cytoskeletal filaments that consist of long flexible C-terminal tails that are abundant with charges. The tails attain additional negative charges through serine phosphorylation of Lys-Ser-Pro (KSP) repeat motifs that are particularly found in neurofilament heavy (NF-H) and neurofilament medium (NF-M) proteins. These side-arm protrusions mediate the interaction between neighboring filaments and maintain axonal diameter. However, the precise role of NF proteins and their phosphorylation in regulating interfilament distances and axonal diameter still remains unclear. In this regard, a recent gene replacement study revealed that the phosphorylation of mouse NF-M KSP repeats does not affect axonal cytoarchitecture, challenging the conventional viewpoint on the role of NF phosphorylation. To better understand the effect of phosphorylation, particularly NF-M phosphorylation, we applied a computational method to reveal phosphorylation-mediated conformational changes in mouse NF architecture. We employed a three-dimensional sequence-based coarse-grained NF brush model to perform Monte Carlo simulations of mouse NF by using the sequence and stoichiometry of mouse NF proteins. Our result shows that the phosphorylation of mouse NF-M does not change the radial extension of NF-M side arms under a salt-free condition and in ionic solution, highlighting a structural factor that supports the notion that NF-M KSP phosphorylation has no effect on the axonal diameter of mouse. On the other hand, significant phosphorylation-mediated conformational changes were found in NF-H side arms under the salt-free condition, while the changes in ionic solution are not significant. However, NF-H side arms are found at the periphery of mouse NF architecture, implying a role in linking neighboring filaments.  相似文献   

12.
Neurofilament (NF) structure and ability to form cross-bridges were examined by quick-freeze deep-etch mica and low-angle rotary-shadow electron microscopy in NFs purified from bovine spinal cord and reassembled in various combinations of NF subunits. When NFs were reassembled from triplet proteins, NF-L, NF-M and NF-H, they were oriented randomly and often fragmented, but their elongated filaments (12-15 nm wide) and the cross-bridges (4-5 nm wide) connecting them were similar in appearance to those of isolated bovine NFs or in vivo rat NFs. Projections extended from the wall of the core filament in almost the same pattern as the cross-bridges and were the same in width and interval (minimum interval, 20-25 nm) as the cross-bridges. Projections were more conspicuous when core filaments were separated by 60 to 80 nm or more, while cross-bridges were more conspicuous when core filaments were close to each other. Projections or cross-bridges extended bilaterally at intervals of 20 to 25 nm where core filaments expanded and formed a network between filaments which were far from one another. When NFs were reconstructed from NF-L alone, only core filaments appeared, the same width as the filaments of triplet NFs. The core filaments were occasionally in almost direct contact with each other, with no projection or cross-bridge. When NFs were reassembled from NF-M alone or NF-L + NF-M, although NF-M core filaments were shorter and slightly thinner than NF-L + NF-M core filaments, both had projections, and both had cross-bridges, but cross-bridges were less evident. Cross-bridges were almost the same in width as those of triplet NFs, but significantly shorter and much less frequent although the minimum interval was the same, and core filaments were not attached to each other. In contrast, when NFs were reconstituted from NF-H alone or NF-L + NF-H, both had conspicuous projections and cross-bridges, similar to those of triplet NFs. Thus, when NFs contained NF-H, they formed frequent cross-bridges and long projections with extensive peripheral branching. When NFs contained NF-M but no NF-H, they tended to form cross-bridges, and to form projections that were shorter and straighter and without peripheral branching. That is, there appears to be a significant difference between NF-M and NF-H in ability to form cross-bridges and thus in interaction with adjacent NFs.  相似文献   

13.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   

14.
The molecular subunit composition of neurofilaments (NFs) progressively changes during axon development. In developing Xenopus laevis spinal cord, peripherin emerges at the earliest stages of neurite outgrowth. NF-M and XNIF (an alpha-internexin-like protein) appear later, as axons continue to elongate, and NF-L is expressed after axons contact muscle. Because NFs are the most abundant component of the vertebrate axonal cytoskeleton, we must understand why these changes occur before we can fully comprehend how the cytoskeleton regulates axon growth and morphology. Knowing where these proteins are localized within developing neurites and how their expression changes with cell contact is essential for this understanding. Thus, we examined by immunofluorescence the expression and localization of these NF subunits within dissociated cultures of newly differentiating spinal cord neurons. In young neurites, peripherin was most abundant in distal neuritic segments, especially near branch points and extending into the central domain of the growth cone. In contrast, XNIF and NF-M were usually either absent from very young neurites or exhibited a proximal to distal gradient of decreasing intensity. In older neurites, XNIF and NF-M expression increased, whereas that of peripherin declined. All three of these proteins became more evenly distributed along the neurites, with some branches staining more intensely than others. At 24 h, NF-L appeared, and in 48-h cultures, its expression, along with that of NF-M, was greater in neurites contacting muscle cells, arguing that the upregulation of these two subunits is dependent on contact with target cells. Moreover, this contact had no effect on XNIF or peripherin expression. Our findings are consistent with a model in which peripherin plays an important structural role in growth cones, XNIF and NF-M help consolidate the intermediate filament cytoskeleton beginning in the proximal neurite, and increased levels of NF-L and NF-M help further solidify the cytoskeleton of axons that successfully reach their targets.  相似文献   

15.
Dendrites play important roles in neuronal function. However, the cellular mechanism for the growth and maintenance of dendritic arborization is unclear. Neurofilaments (NFs), a major component of the neuronal cytoskeleton, are composed of three polypeptide subunits, NF-H, NF-M, and NF-L, and are abundant in large dendritic trees. By overexpressing each of the three NF subunits in transgenic mice, we altered subunit composition and found that increasing NF-H and/or NF-M inhibited dendritic arborization, whereas increasing NF-L alleviated this inhibition. Examination of cytoskeletal organization revealed that increasing NF-H and/or NF-M caused NF aggregation and dissociation of the NF network from the microtubule (MT) network. Increasing NF-H or NF-H together with NF-M further reduced NFs from dendrites. However, these changes were reversed by elevating the level of NF-L with either NF-H or NF-M. Thus, NF-L antagonizes NF-H and NF-M in organizing the NF network and maintaining a lower ratio of NF-H and NF-M to NF-L is critical for the growth of complex dendritic trees in motor neurons.  相似文献   

16.
In neurons the phosphorylation of neurofilament (NF) proteins NF-M and NF-H is topographically regulated. Although kinases and NF subunits are synthesized in cell bodies, extensive phosphorylation of the KSP repeats in tail domains of NF-M and NF-H occurs primarily in axons. The nature of this regulation, however, is not understood. As obligate heteropolymers, NF assembly requires interactions between the core NF-L with NF-M or NF-H subunits, a process inhibited by NF head domain phosphorylation. Phosphorylation of head domains at protein kinase A (PKA)-specific sites seems to occur transiently in cell bodies after NF subunit synthesis. We have proposed that transient phosphorylation of head domains prevents NF assembly in the soma and inhibits tail domain phosphorylation; i.e. assembly and KSP phosphorylation in axons depends on prior dephosphorylation of head domain sites. Deregulation of this process leads to pathological accumulations of phosphorylated NFs in the soma as seen in some neurodegenerative disorders. To test this hypothesis, we studied the effect of PKA phosphorylation of the NF-M head domain on phosphorylation of tail domain KSP sites. In rat cortical neurons we showed that head domain phosphorylation of endogenous NF-M by forskolin-activated PKA inhibits NF-M tail domain phosphorylation. To demonstrate the site specificity of PKA phosphorylation and its effect on tail domain phosphorylation, we transfected NIH3T3 cells with NF-M mutated at PKA-specific head domain serine residues. Epidermal growth factor stimulation of cells with mutant NF-M in the presence of forskolin exhibited no inhibition of NF-tail domain phosphorylation compared with the wild type NF-M-transfected cells. This is consistent with our hypothesis that transient phosphorylation of NF-M head domains inhibits tail domain phosphorylation and suggests this as one of several mechanisms underlying topographic regulation.  相似文献   

17.
The optic nerve, as a part of the central nervous system (CNS), has been used to study axonal transport for decades. The present study has concentrated on the axonal transport of synaptic vesicle proteins in the optic nerve, using the “stop-flow/nerve crush” method. After blocking fast axonal transport, distinct accumulations of synaptic vesicle proteins developed during the first hour after crush-operation and marked increases were observed up to 8 h postoperative. Semiquantitative analysis, using cytofluorimetric scanning (CFS) of immunoincubated sections, revealed that the ratio between distal accumulations (organelles in retrograde transport) and proximal accumulations (organelles in anterograde transport) was much higher (up to 80–90%) for the transmembrane proteins than that for surface adsorbed proteins (only 10–20%). The pattern of axonal transport in the optic nerve was comparable to that in the sciatic nerve. However, clathrin and Rab3a immunoreactivities were accumulated in much lower amounts than that in the sciatic nerve. Most synaptic vesicle proteins were colocalized in the axons proximal to the crush. A differential distribution of synaptobrevin I and II, however, was observed in the optic nerve axons; synaptobrevin I was present in large-sized axons, while synaptobrevin II immunoreactivity was present in most axons, including the large ones. The two isoforms were, thus, partially colocalized. The results demonstrate that (1) cytofluorimetric scanning techniques could be successfully used to study axonal transport not only in peripheral nerves, but also in the CNS; (2) synaptic vesicles are transported with fast axonal transport in this nerve; and (3) some differences were noted compared with the sciatic nerve, especially for Rab3a and clathrin. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 237–250, 1997.  相似文献   

18.
Neurofilaments (NFs) are neuron-specific intermediate filaments. The NFs were isolated from bovine spinal cord by differential centrifugation. The NFs were detected with electron microscopy and scanning tunneling microscopy (STM). Under STM, two kinds of sidearm of NFs were revealed: one was short, the other was long. They were arrayed along the 10-nm width core filaments one by one. The intervals between two adjacent long sidearms or two short sidearms were 20–22 nm, while those between two adjacent long and short sidearms were 10–11 nm. It was proposed that the rod domain of NF triplet proteins was 3/4-staggered. The assembly properties of NF triplet proteins were also studied. Immuno-colloidal-gold labeling assay showed that NF-M and NF-H are able to co-assemble into long filaments with NF-L. NF-M and NF-H can also co-constitute into winding filaments.  相似文献   

19.
The delivery of cytoskeletal proteins to the axon occurs by slow axonal transport. We examined how the rate of slow transport was altered after axonal injury. When retinal ganglion cell (RGC) axons regenerated through peripheral nerve grafts, an increase in the rate of slow transport occurred during regrowth of the injured axons. We compared these results to axonal injury in the optic nerve where no substantial regrowth occurs and found a completely different response. Slow transport was decreased approximately tenfold in rate in the proximal segment of crushed optic nerves. This decreased rate of slow transport was not induced immediately, but occurred about 1 week after injury. To explore whether a decrease in the rate of slow transport was induced when the regeneration of peripheral nerves was physically blocked, we examined slow transport in motor neurons after the sciatic nerve was transected and ligated. In this case, no change in the rate of the comigrating tubulin and neurofilament (NF) radioactive peaks were observed. We discuss how the changes in the rate of slow transport may reflect different neuronal responses to injury and speculate about the possible molecular changes in the expression of tubulin which may contribute to the observed changes. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
The delivery of cytoskeletal proteins to the axon occurs by slow axonal transport. We examined how the rate of slow transport was altered after axonal injury. When retinal ganglion cell (RGC) axons regenerated through peripheral nerve grafts, an increase in the rate of slow transport occurred during regrowth of the injured axons. We compared these results to axonal injury in the optic nerve where no substantial regrowth occurs and found a completely different response. Slow transport was decreased approximately tenfold in rate in the proximal segment of crushed optic nerves. This decreased rate of slow transport was not induced immediately, but occurred about 1 week after injury. To explore whether a decrease in the rate of slow transport was induced when the regeneration of peripheral nerves was physically blocked, we examined slow transport in motor neurons after the sciatic nerve was transected and ligated. In this case, no change in the rate of the comigrating tubulin and neurofilament (NF) radioactive peaks were observed. We discuss how the changes in the rate of slow transport may reflect different neuronal responses to injury and speculate about the possible molecular changes in the expression of tubulin which may contribute to the observed changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号