首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colicin Ia, a channel‐forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor‐binding domain bound to Cir, a 22‐stranded plugged β‐barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no ‘second receptor’ has ever been identified for TonB‐dependent colicins, such as Ia. We show that if the receptor‐binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild‐type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N‐terminal translocation (T) domain and its channel‐forming C‐terminal domain. Deletion of colicin Ia's receptor‐binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor‐binding domain, Cir also binds weakly to its translocation domain.  相似文献   

2.
Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage-dependent ion channel. We determined crystal structures of colicin I receptor alone and in complex with the receptor binding domain of colicin Ia. The receptor undergoes large and unusual conformational changes upon colicin binding, opening at the cell surface and positioning the receptor binding domain of colicin Ia directly above it. We modelled the interaction with full-length colicin Ia to show that the channel forming domain is initially positioned 150 A above the cell surface. Functional data using full-length colicin Ia show that colicin I receptor is necessary for cell surface binding, and suggest that the receptor participates in translocation of colicin Ia across the outer membrane.  相似文献   

3.
Conditions are reported under which membrane vesicles prepared from Escherichia coli K12 are depolarized by colicin Ia. Although incubation of membrane vesicles with active colicin Ia affects neither transport activity nor the ability of such vesicles to generate a deltapH or deltapsi, a single freeze-thaw cycle of such vesicles in the presence of colicin Ia leads to 1) retention of the colicin by the vesicles, 2) inactivation of transport activity, and 3) membrane depolarization, with a concomitant increase in the transmembrane deltapH. These effects are dependent upon the presence of active colicin Ia during the freeze-thaw cycle. These findings are consistent with our previous results showing that Ia-treated whole cells or membrane vesicles prepared from such cells are defective in their ability to generate a deltapsi, yet generate an increased deltapH (Tokuda, H., and Konisky, J. (1978) Proc. Natl. Acad. Sci. U. S. A., 75, 2579--2583). In addition to its effect on vesicles prepared from sensitive cells, we show that vesicles prepared from both colicin Ia-resistant and -tolerant cells are depolarized by colicin treatment with a concomitant increase in deltapH. It is concluded that the final target of colicin Ia is the cytoplasmic membrane. A model for the mechanism of colicin Ia action is presented in which colicin Ia binds to the specific colicin Ia outer membrane receptor and is subsequently translocated to the cytoplasmic membrane where its integration leads to the formation of ion channels.  相似文献   

4.
Strains of Escherichia coli K-12 defective in their ability to utilize exogenously supplied iron due to genetic defects in the entF, tonB, fes, or fep gene exhibited elevated levels of the specific outer-membrane receptor for colicin Ia when compared with parental strains. Although entF, fes, and fep strains showed a higher degree of Ia sensitivity than did the parental strains, tonB strains were resistant to colicin action. The colicin insensitivity of tonB strains was not due to hyperproduction of enterochelin. Growth in medium containing 101.8 muM Fe2+ led to a lowering of receptor levels in all the above strains and resulted in decreased colicin Ia sensitivity in all strains except tonB, which was already at maximal resistance. Growth in citrate plus iron (1.8 muM) or in ferrichrome resulted in a substantial reduction in both receptor levels and Ia sensitivity in ent, fes, and fep strains but had no effect on receptor levels in tonB strains. Growth in citrate did not lead to an alteration in receptor levels in a mutant specifically defective in citrate-mediated iron transport. The presence of enterochelin during growth led to a reduction in the number of receptors in the parental and ent strains but not in tonB, fes, or fep strains. Thus, in all cases examined, there was an inverse relationship between the number of colicin receptors per cell and the ability of the strain to take up iron from the growth medium. This suggests that under conditions of iron limitation there is a derepression of colicin Ia receptor biosynthesis. These results may point to a role of the colicin I receptor in iron uptake.  相似文献   

5.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

6.
The outer membranes of two independent colicin Ia-resistant mutants of Escherichia coli K-12 lack the colicin Ia receptor protein. Such mutants exhibit normal capacity for enterochelin (enterobactin)-mediated iron uptake. It is concluded that the colicin Ia receptor is not involved in iron-enterochelin uptake.  相似文献   

7.
Regions of both colicin Ia and diphtheria toxin N-terminal to the channel-forming domains can be translocated across planar phospholipid bilayer membranes. In this article we show that the translocation pathway of diphtheria toxin allows much larger molecules to be translocated than does the translocation pathway of colicin Ia. In particular, the folded A chain of diphtheria toxin is readily translocated by that toxin but is not translocated by colicin Ia. This difference cannot be attributed to specific recognition of the A chain by diphtheria toxin's translocation pathway because the translocation pathway also accommodates folded myoglobin.  相似文献   

8.
Survey results and genotypic characterization of Escherichia coli strains demonstrate that the bacteriocins colicin Ia and microcin V coassociate in a strain more often than would be expected by chance. When these two bacteriocins co-occur, they are encoded on the same conjugative plasmid. Plasmids encoding colicin Ia and microcin V are nonrandomly distributed with respect to the genomic background of the host strain. Characterization of microcin V and colicin Ia nucleotide variation, together with the backbone of plasmids encoding these bacteriocins, indicates that the association has evolved on multiple occasions and involves the movement of the microcin V operon, together with the genes iroNEDCB and iss, onto a nonrandom subset of colicin Ia plasmids. The fitness advantage conferred on cells encoding both colicin Ia and microcin V has yet to be determined.  相似文献   

9.
Escherichia coli strains B and K12 W 1655 F+ are able to bind more lethal units of colicins E2, E3, G, H, Ia, and K+ X per one stable L-form cell (of the protoplast type) than per one rod cell; colicin D is bound in a higher amount on E. coli B rods. This pattern remains unchanged, if the same colicins are attached on chloroform-killed cells of both forms. Rods of both E. coli strains are more sensitive to colicins D, E2, E3, K + X (as--in the strain B--to colicin Ia) than cells of the respective L-forms. In the strain W 1655 F+ both cell forms are equally highly sensitive to colicin Ia. The stable L-forms of both strains are much more sensitive to colicins G and H than the rods. Thus the Gram-negative cell wall decreases the probability of a colicin molecule to get attached to its receptor in the cytoplasmic membrane. On the other hand, in E. coli cells the attachment of most colicin molecules to the wall receptors increases the probability of their biological effect. There is no such effect of the wall-attachment on the action of colicins G or H. The strain B is tolerant to colicin E2, while being resistant to E3; thus the cytoplasmic membrane receptor sites for them are not identical.  相似文献   

10.
A carboxy-terminal, 18 kD fragment of colicin Ia, a bacterial toxin, forms ion channels in artificial phospholipid bilayers. This fragment, which comprises a quarter of the intact 70 kD molecule, is resistant to extensive protease digestion and probably constitutes a structural domain of the protein. The ion channels formed by the 18 kD fragment are functionally heterogeneous, having conductances that range from 15 to 30 pS at positive voltages and from 70 to 250 pS at negative voltages, and open lifetimes that range from at least 25 msec to 5 sec. In contrast, ion channels formed by whole colicin Ia open only at negative voltages, at which their conductances range from 6 to 30 pS, and their open lifetimes range from 1 sec to 3 min. Additionally, the open state of the 18 kD fragment channel is characterized by noisy fluctuations in current, while the open state of the whole molecule ion channel is often marked by numerous, stable subconductance states. Since the properties of the fragment channel differ substantially from those of the whole molecule channel, we suggest that portions of the molecule outside of the 18 kD fragment are involved in forming the whole molecule ion channel.  相似文献   

11.
The colicin Ia structural (cia) and immunity (iia) genes of plasmid pColIa-CA53 have been cloned into the cloning vector pBR322. These two genes are closely linked, and both of them can be isolated on a deoxyribonucleic acid fragment approximately 4,800 base pairs long. An analysis of the polypeptides synthesized in ultraviolet-irradiated cells containing these cloned genes led to the conclusion that the iia gene product is a polypeptide with a molecular weight of approximately 14,500. Insertion of transposon Tn5 into the iia gene led to a concomitant loss of the immune phenotype and the ability to produce this protein. Fractionation of ultraviolet-irradiated cells harboring a plasmid carrying the iia gene showed that the immunity protein is a component of the inner (cytoplasmic) membrane. Furthermore, the mechanism of immunity to colicin Ia appears to operate at the level of the cytoplasmic membrane. This conclusion is based on our finding that membrane vesicles prepared from colicin Ia-immune cells could be depolarized by colicins E1 and Ib but not by colicin Ia.  相似文献   

12.
Colicin B (55 kDa) is a cytotoxic protein that recognizes the outer membrane transporter, FepA, as a receptor and, after gaining access to the cytoplasmic membranes of sensitive Escherichia coli cells, forms a pore that depletes the electrochemical potential of the membrane and ultimately results in cell death. To begin to understand the series of dynamic conformational changes that must occur as colicin B translocates from outer membrane to cytoplasmic membrane, we report here the crystal structure of colicin B at 2.5 A resolution. The crystal belongs to the space group C2221 with unit cell dimensions a = 132.162 A, b = 138.167 A, c = 106.16 A. The overall structure of colicin B is dumbbell shaped. Unlike colicin Ia, the only other TonB-dependent colicin crystallized to date, colicin B does not have clearly structurally delineated receptor-binding and translocation domains. Instead, the unique N-terminal lobe of the dumbbell contains both domains and consists of a large (290 residues), mostly beta-stranded structure with two short alpha-helices. This is followed by a single long ( approximately 74 A) helix that connects the N-terminal domain to the C-terminal pore-forming domain, which is composed of 10 alpha-helices arranged in a bundle-type structure, similar to the pore-forming domains of other colicins. The TonB box sequence at the N-terminus folds back to interact with the N-terminal lobe of the dumbbell and leaves the flanking sequences highly disordered. Comparison of sequences among many colicins has allowed the identification of a putative receptor-binding domain.  相似文献   

13.
Colicinogenic cells are immune to the lethal effect of the colicin which they produce. In the presence of very high concentrations of colicin, however, colicinogenic cells are no longer immune to the homologous colicin. This phenomenon, immunity breakdown, was studied with colicins Ia and Ib. The biochemical effects of colicin Ib on Escherichia coli were studied with a standard noncolicinogenic strain. At multiplicities of about 10 or higher, colicin Ib inhibited incorporation of leucine into protein and incorporation of (32)P-inorganic phosphate into deoxyribonucleic acid and ribonucleic acid by more than 95%. Under the same conditions, (32)P incorporation into phospholipid and nucleotide fractions was inhibited only partially (about 80 and 60%, respectively). Inhibition of (32)P incorporation into the terminal phosphorus of adenosine triphosphate was also considerably less than that of macromolecular synthesis (50 to 60%). (32)P incorporation into the nonnucleotide organic phosphate fraction was not inhibited. Respiration was not affected. Colicin Ia showed the same biochemical effects as colicin Ib. A mutant of an Ib-colicinogenic E. coli strain selected for resistance to low concentrations of colicin Ia was shown to be resistant to high concentrations of homologous colicin Ib, whereas the parent Ib-colicinogenic strain is sensitive to high concentrations of colicin Ib. This mutant lost its specific receptors for colicin Ib. Moreover, the biochemical effects of high concentrations of colicin Ib on Ib-colicinogenic cells during immunity breakdown were similar to the effects found in sensitive cells exposed to low concentrations of the same colicin. It is concluded that the killing of colicinogenic cells in the presence of high concentrations of homologous colicin is indeed caused by the homologous colicin molecules.  相似文献   

14.
Colicin N is a bacteriocin that kills sensitive Escherichia coli cells. After binding to the cell surface-exposed receptor, a short period exists when a significant number of the cell-associated colicin N molecules are sensitive to external enzymes. Two colicin N populations are discriminated by proteases: the susceptible pool bound to OmpF porin on the cell surface and another population corresponding to protease-inaccessible colicin N. During translocation, colicin N reaches the periplasmic space and proteolytic cleavage of the colicin occurs only when the outer membrane barrier is permeabilized.  相似文献   

15.
D Huster  L Xiao  M Hong 《Biochemistry》2001,40(25):7662-7674
Solid-state NMR spectroscopy was employed to study the molecular dynamics of the colicin Ia channel domain in the soluble and membrane-bound states. In the soluble state, the protein executes small-amplitude librations (with root-mean-square angular fluctuations of 0-10 degrees ) in the backbone and larger-amplitude motions (16-17 degrees ) in the side chains. Upon membrane binding, the motional amplitudes increase significantly for both the backbone (12-16 degrees ) and side chains (23-29 degrees ), as manifested by the reduction in the C-H and H-H dipolar couplings and (15)N chemical shift anisotropy. These motions occur not only on the pico- to nanosecond time scales, but also on the microsecond time scale, as revealed by the (1)H rotating-frame spin-lattice relaxation times. Average motional correlation times of 0.8 and 1.2 micros were extracted for the soluble and membrane-bound states, respectively. In comparison, both forms of the colicin Ia channel domain are completely immobile on the millisecond scale. These results indicate that the colicin Ia channel domain has enhanced conformational mobility in the lipid bilayer compared to the soluble state. This membrane-induced mobility increase is consistent with the loss of tertiary structure of the protein in the membrane, which was previously suggested by the extended helical array model [Zakharov et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4282-4287]. An extended structure would also facilitate protein interactions with the mobile lipids and thus increase the protein internal motions. We speculate that the large mobility of the membrane-bound colicin Ia channel domain is a prerequisite for channel opening in the presence of a voltage gradient.  相似文献   

16.
A variety of natural and synthetic siderophores capable of supporting the growth of Escherichia coli K-12 on iron-limited media also protect strain RW193+ (tonA+ ent-) from the killing action of colicins B, V, and Ia. Protective activity falls into two categories. The first, characteristic of enterobactin protection against colicin B and ferrichrome protection against colicin M, has properties of a specific receptor competition between the siderophore and the colicin. Thus, enterobactin specifically protects against colicin B in fes- mutants (able to accumulate but unable to utilize enterobactin) as predicted by our proposal that the colicin B receptor functions in the specific binding for uptake of enterobactin (Wayne and Neilands, 1975). Similarly ferrichrome specifically protects against colicin M in SidA mutants (defective in hydroxamate siderophore utilization). The second category of protective response, characteristic of the more general siderophore inhibition of colicins B, V, and Ia, requires the availability or metabolism of siderophore iron. Thus, enterobactin protects against colicins V and Ia, but only when the colicin indicator strain is fes+, and hydroxamate siderophores inhibit colicins B, V, and Ia, but only when the colicin indicator strain is SidA+. Moreover, ferrichrome inhibits colicins B, V, and Ia, yet chromium (III) deferriferrichrome is inactive, and ferrichrome itself does not prevent adsorption of colicin Ia receptor material in vitro. Although the nonspecific protection against colicins B, V, and Ia requires iron, the availability of siderophore iron for cell growth is not sufficient to bring about protection. None of the siderophores tested protect cells against the killing action of colicin E1 or K, or against the energy poisons azide, 2, 4-dinitrophenol, and carbonylcyanide m-chlorophenylhydrazone. We suggest that nonspecific siderophore protection against colicins B, V, and Ia may be due either to an induction of membrane alterations in response to siderophore iron metabolism or to a direct interference by siderophore iron with some unknown step in colicin action subsequent to adsorption.  相似文献   

17.
The specific binding of 125 Iodine labelled colicin Ia and Ib to Escherichia coli cell envelopes and partially purified cell walls is demonstrated. Neither partially purified cytoplasmic membranes isolated from a wild type sensitive strain nor envelopes or cell walls prepared from an E. coli mutant known to be defective in the colicin I receptor could bind the colicins. Competition studies suggest that colicins Ia and Ib have a common bacterial receptor which resides in the bacterial cell wall.  相似文献   

18.
Import-defective colicin B derivatives mutated in the TonB box   总被引:13,自引:5,他引:8  
The pore-forming colicin B is taken up into Escherichia coli by a receptor and TonB-dependent process. The receptor and colicin B both contain a similar amino acid sequence, close to the N-terminal end, termed the TonB box. Point mutations were introduced into the TonB-box region of the colicin B structural gene cba resulting in colicin B derivatives which were partially or totally inactive against E. coli cells. All derivatives still bound to the receptor. An inactive derivative killed cells when translocated across the outer membrane by osmotic shock treatment, and formed pores in planar lipid bilayer membranes identical to the wild-type colicin. Some of the mutations were partially suppressed by mutations in the tonB structural gene. It was concluded that the TonB-box mutations define a region that is involved in the uptake of colicin B across the outer membrane.  相似文献   

19.
Channel-forming colicins are bactericidal proteins that spontaneously insert into hydrophobic lipid bilayers. We have used magic-angle spinning solid-state nuclear magnetic resonance spectroscopy to examine the conformational differences between the water-soluble and the membrane-bound states of colicin Ia channel domain, and to study the effect of bound colicin on lipid bilayer structure and dynamics. We detected (13)C and (15)N isotropic chemical shift differences between the two forms of the protein, which indicate structural changes of the protein due to membrane binding. The Val C(alpha) signal, unambiguously assigned by double-quantum experiments, gave a 0.6 ppm downfield shift in the isotropic position and a 4 ppm reduction in the anisotropic chemical shift span after membrane binding. These suggest that the alpha-helices in the membrane-bound colicin adopt more ideal helical torsion angles as they spread onto the membrane. Colicin binding significantly reduced the lipid chain order, as manifested by (2)H quadrupolar couplings. These results are consistent with the model that colicin Ia channel domain forms an extended helical array at the membrane-water interface upon membrane binding.  相似文献   

20.
The bacterial toxin colicin Ia forms voltage-gated channels in planar lipid bilayers. The toxin consists of three domains, with the carboxy-terminal domain (C-domain) responsible for channel formation. The C-domain contributes four membrane-spanning segments and a 68-residue translocated segment to the open channel, whereas the upstream domains and the amino-terminal end of the C-domain stay on the cis side of the membrane. The isolated C-domain, lacking the two upstream domains, also forms channels; however, the amino terminus and one of the normally membrane-spanning segments can move across the membrane. (This can be observed as a drop in single-channel conductance.) In longer carboxy-terminal fragments of colicin Ia that include /=90 mV, even a 26-A stopper is translocated. Upon reduction of their disulfide bonds, all of the stoppers are easily translocated, indicating that it is the folded structure, rather than some aspect of the primary sequence, that slows translocation of the stoppers. Thus, the pathway for translocation is >/=26 A in diameter, or can stretch to this value. This is large enough for an alpha-helical hairpin to fit through.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号