首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[URE3] is a prion (infectious protein) of the Ure2 protein of yeast. In vitro, Ure2p can form amyloid filaments, but direct evidence that these filaments constitute the infectious form is still missing. Here we demonstrate that recombinant Ure2p converted into amyloid can infect yeast cells lacking the prion. Infection produced a variety of [URE3] variants. Extracts of [URE3] strains, as well as amyloid of Ure2p formed in an extract-primed reaction could transmit to uninfected cells the [URE3] variant present in the cells from which the extracts were made. Infectivity and determinant of [URE3] variants resided within the N-terminal 65 amino acids of Ure2p. Notably, we could show that amyloid filaments of recombinant Ure2p are nearly as infectious per mass of Ure2p as extracts of [URE3] strains. Sizing experiments indicated that infectious particles in vitro and in vivo were >20 nm in diameter, suggesting that they were amyloid filaments and not smaller oligomeric structures. Our data indicate that there is no substantial difference between filaments formed in vivo and in vitro.  相似文献   

2.
[URE3] is a non-Mendelian genetic element in Saccharomyces cerevisiae, which is caused by a prion-like, autocatalytic conversion of the Ure2 protein (Ure2p) into an inactive form. The presence of [URE3] allows yeast cells to take up ureidosuccinic acid in the presence of ammonia. This phenotype can be used to select for the prion state. We have developed a novel reporter, in which the ADE2 gene is controlled by the DAL5 regulatory region, which allows monitoring of Ure2p function by a colony color phenotype. Using this reporter, we observed induction of different [URE3] prion variants ("strains") following overexpression of the N-terminal Ure2p prion domain (UPD) or full-length Ure2p. Full-length Ure2p induced two types of [URE3]: type A corresponds to conventional [URE3], whereas the novel type B variant is characterized by relatively high residual Ure2p activity and efficient curing by coexpression of low amounts of a UPD-green fluorescent protein fusion protein. Overexpression of UPD induced type B [URE3] but not type A. Both type A and B [URE3] strains, as well as weak and strong isolates of type A, were shown to stably maintain different prion strain characteristics. We suggest that these strain variants result from different modes of aggregation of similar Ure2p monomers. We also demonstrate a procedure to counterselect against the [URE3] state.  相似文献   

3.
Two infectious proteins (prions) of Saccharomyces cerevisiae have been identified by their unusual genetic properties: (1) reversible curability, (2) de novo induction of the infectious prion form by overproduction of the protein, and (3) similar phenotype of the prion and mutation in the chromosomal gene encoding the protein. [URE3] is an altered infectious form of the Ure2 protein, a regulator of nitrogen catabolism, while [PSI] is a prion of the Sup35 protein, a subunit of the translation termination factor. The altered form of each is inactive in its normal function, but is able to convert the corresponding normal protein into the same altered inactive state. The N-terminal parts of Ure2p and Sup35p (the "prion domains") are responsible for prion formation and propagation and are rich in asparagine and glutamine residues. Ure2p and Sup35p are aggregated in vivo in [URE3]- and [PSI]-containing cells, respectively. The prion domains can form amyloid in vitro, suggesting that amyloid formation is the basis of these two prion diseases. Yeast prions can be cured by growth on millimolar concentrations of guanidine. An excess or deficiency of the chaperone Hsp104 cures the [PSI] prion. Overexpression of fragments of Ure2p or certain fusion proteins leads to curing of [URE3].  相似文献   

4.
The [URE3] prion (infectious protein) of yeast is a self-propagating, altered form of Ure2p that cannot carry out its normal function in nitrogen regulation. Previous data have shown that Ure2p can form protease-resistant amyloid filaments in vitro, and that it is aggregated in cells carrying the [URE3] prion. Here we show by electron microscopy that [URE3] cells overexpressing Ure2p contain distinctive, filamentous networks in their cytoplasm, and demonstrate by immunolabeling that these networks contain Ure2p. In contrast, overexpressing wild-type cells show a variety of Ure2p distributions: usually, the protein is dispersed sparsely throughout the cytoplasm, although occasionally it is found in multiple small, focal aggregates. However, these distributions do not resemble the single, large networks seen in [URE3] cells, nor do the control cells exhibit cytoplasmic filaments. In [URE3] cell extracts, Ure2p is present in aggregates that are only partially solubilized by boiling in SDS and urea. In these aggregates, the NH(2)-terminal prion domain is inaccessible to antibodies, whereas the COOH-terminal nitrogen regulation domain is accessible. This finding is consistent with the proposal that the prion domains stack to form the filament backbone, which is surrounded by the COOH-terminal domains. These observations support and further specify the concept of the [URE3] prion as a self-propagating amyloid.  相似文献   

5.
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism in Saccharomyces cerevisiae. The Ure2p of the human pathogen Candida albicans can also be a prion in S. cerevisiae. We find that overproduction of the disaggregating chaperone, Hsp104, increases the frequency of de novo [URE3] prion formation by the Ure2p of S. cerevisiae and that of C. albicans. This stimulation is strongly dependent on the presence of the [PIN(+)] prion, known from previous work to enhance [URE3] prion generation. Our data suggest that transient Hsp104 overproduction enhances prion generation through persistent effects on Rnq1 amyloid, as well as during overproduction by disassembly of amorphous Ure2 aggregates (generated during Ure2p overproduction), driving the aggregation toward the amyloid pathway. Overproduction of other major cytosolic chaperones of the Hsp70 and Hsp40 families (Ssa1p, Sse1p, and Ydj1p) inhibit prion formation, whereas another yeast Hsp40, Sis1p, modulates the effects of Hsp104p on both prion induction and prion curing in a prion-specific manner. The same factor may both enhance de novo prion generation and destabilize existing prion variants, suggesting that prion variants may be selected by changes in the chaperone network.  相似文献   

6.
The Ure2 protein of Saccharomyces cerevisiae can become a prion (infectious protein). At very low frequencies Ure2p forms an insoluble, infectious amyloid known as [URE3], which is efficiently transmitted to progeny cells or mating partners that consequently lose the normal Ure2p nitrogen regulatory function. The [URE3] prion causes yeast cells to grow slowly, has never been identified in the wild, and confers no obvious phenotypic advantage. An N-terminal asparagine-rich domain determines Ure2p prion-forming ability. Since ure2Delta strains are complemented by plasmids that overexpress truncated forms of Ure2p lacking the prion domain, the existence of the [URE3] prion and the evolutionary conservation of an N-terminal extension have remained mysteries. We find that Ure2p function is actually compromised in vivo by truncation of the prion domain. Moreover, Ure2p stability is diminished without the full-length prion domain. Mca1p, like Ure2p, has an N-terminal Q/N-rich domain whose deletion reduces its steady-state levels. Finally, we demonstrate that the prion domain may affect the interaction of Ure2p with other components of the nitrogen regulation system, specifically the negative regulator of nitrogen catabolic genes, Gzf3p.  相似文献   

7.
Ripaud L  Maillet L  Cullin C 《The EMBO journal》2003,22(19):5251-5259
The yeast prion [URE3] is a self-propagating inactive form (the propagon) of the Ure2 protein. Ure2p is composed of two domains: residues 1-93--the prion-forming domain (PFD)--and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. Guanidine hydrochloride, and the overproduction of Ure2p 1-65 or Ure2-GFP have been shown to induce the elimination of [URE3]. We demonstrate here, two different curing mechanisms: the inhibition of [URE3] replication by guanidine hydrochloride and its destruction by Ure2p aggregation. Such aggregation is observed if PFD or Ure2-GFP are overproduced and in heterozygous URE2/URE2-GFP, [URE3] diploids. We found that the GFP foci associated with the presence of the prion were dead-end products, the propagons remaining soluble. Surprisingly, [URE3] propagated via the Ure2-GFP fusion protein alone is resistant to these two curing mechanisms and cannot promote the formation of foci. The relationship between aggregation, prion and Hsp104 gives rise to a model in which the propagon is in equilibrium with larger aggregates and functional protein.  相似文献   

8.
The [URE3] yeast prion is a self-propagating inactive form of the Ure2 protein. Ure2p is composed of two domains, residues 1-93, the prion-forming domain, and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. In vitro, Ure2p forms amyloid filaments that have been proposed to be the aggregated prion form found in vivo. Here we showed that the biochemical characteristics of these two species differ. Protease digestions of Ure2p filaments and soluble Ure2p are comparable when analyzed by Coomassie staining as by Western blot. However, this finding does not explain the pattern specifically observed in [URE3] strains. Antibodies raised against the C-terminal part of Ure2p revealed the existence of proteolysis sites efficiently cleaved when [URE3], but not wild-type crude extracts, were submitted to limited proteolysis. The same antibodies lead to an equivalent digestion pattern when recombinant Ure2p (either soluble or amyloid) was analyzed in the same way. These results strongly suggest that aggregated Ure2p in [URE3] yeast cells is different from the amyloid filaments generated in vitro.  相似文献   

9.
[URE3] is a prion (infectious protein), a self-propagating amyloid form of Ure2p, a regulator of yeast nitrogen catabolism. We find that overproduction of Btn2p, or its homologue Ypr158 (Cur1p), cures [URE3]. Btn2p is reported to be associated with late endosomes and to affect sorting of several proteins. We find that double deletion of BTN2 and CUR1 stabilizes [URE3] against curing by several agents, produces a remarkable increase in the proportion of strong [URE3] variants arising de novo and an increase in the number of [URE3] prion seeds. Thus, normal levels of Btn2p and Cur1p affect prion generation and propagation. Btn2p-green fluorescent protein (GFP) fusion proteins appear as a single dot located close to the nucleus and the vacuole. During the curing process, those cells having both Ure2p-GFP aggregates and Btn2p-RFP dots display striking colocalization. Btn2p curing requires cell division, and our results suggest that Btn2p is part of a system, reminiscent of the mammalian aggresome, that collects aggregates preventing their efficient distribution to progeny cells.  相似文献   

10.
Two Prion-Inducing Regions of Ure2p Are Nonoverlapping   总被引:1,自引:0,他引:1       下载免费PDF全文
Ure2p of Saccharomyces cerevisiae normally functions in blocking utilization of a poor nitrogen source when a good nitrogen source is available. The non-Mendelian genetic element [URE3] is a prion (infectious protein) form of Ure2p, so that overexpression of Ure2p induces the de novo appearance of infectious [URE3]. Earlier studies defined a prion domain comprising Ure2p residues 1 to 64 and a nitrogen regulation domain included in residues 66 to 354. We find that deletion of individual runs of asparagine within the prion domain reduce prion-inducing activity. Although residues 1 to 64 are sufficient for prion induction, the fragment from residues 1 to 80 is a more efficient inducer of [URE3]. In-frame deletion of a region around residue 224 does not affect nitrogen regulation but does eliminate prion induction by the remainder of Ure2p. Larger deletions removing the region around residue 224 and more of the C-terminal part of Ure2p restore prion-inducing ability. A fragment of Ure2p lacking the original prion domain does not induce [URE3], but surprisingly, further deletion of residues 151 to 157 and 348 to 354 leaves a fragment that can do so. The region from 66 to 80 and the region around residue 224 are both necessary for this second prion-inducing activity. Thus, each of two nonoverlapping parts of Ure2p is sufficient to induce the appearance of the [URE3] prion.  相似文献   

11.
The [URE3] yeast prion is a self-propagating inactive form of the Ure2p protein. We show here that Ure2p from the species Saccharomyces paradoxus (Ure2pSp) can be efficiently converted into a prion form and propagate [URE3] when expressed in Saccharomyces cerevisiae at physiological level. We found however that Ure2pSp overexpression prevents efficient prion propagation. We have compared the aggregation rate and propagon numbers of Ure2pSp and of S. cerevisiae Ure2p (Ure2pSc) in [URE3] cells both at different expression levels. Overexpression of both Ure2p orthologues accelerates formation of large aggregates but Ure2pSp aggregates faster than Ure2pSc. Although the yeast cells that contain these large Ure2p aggregates do not transmit [URE3] to daughter cells, the corresponding crude extract retains the ability to induce [URE3] in wild-type [ure3-0] cells. At low expression level, propagon numbers are higher with Ure2pSc than with Ure2pSp. Overexpression of Ure2p decreases the number of [URE3] propagons with Ure2pSc. Together, our results demonstrate that the concentration of a prion protein is a key factor for prion propagation. We propose a model to explain how prion protein overexpression can produce a detrimental effect on prion propagation and why Ure2pSp might be more sensitive to such effects than Ure2pSc.  相似文献   

12.
The [URE3] and [PSI(+)] prions are infectious amyloid forms of Ure2p and Sup35p. Several chaperones influence prion propagation: Hsp104p overproduction destabilizes [PSI(+)], whereas [URE3] is sensitive to excess of Ssa1p or Ydj1p. Here, we show that overproduction of the chaperone, Sse1p, can efficiently cure [URE3]. Sse1p and Fes1p are nucleotide exchange factors for Ssa1p. Interestingly, deletion of either SSE1 or FES1 completely blocked [URE3] propagation. In addition, deletion of SSE1 also interfered with [PSI(+)] propagation.  相似文献   

13.
[URE3] is a prion (infectious protein) of the Saccharomyces cerevisiae Ure2p, a regulator of nitrogen catabolism. We show that wild S. paradoxus can be infected with a [URE3] prion, supporting the use of S. cerevisiae as a prion test bed. We find that the Ure2p of Candida albicans and C. glabrata also regulate nitrogen catabolism. Conservation of amino acid sequence within the prion domain of Ure2p has been proposed as evidence that the [URE3] prion helps its host. We show that the C. albicans Ure2p, which does not conserve this sequence, can nonetheless form a [URE3] prion in S. cerevisiae, but the C. glabrata Ure2p, which does have the conserved sequence, cannot form [URE3] as judged by its performance in S. cerevisiae. These results suggest that the sequence is not conserved to preserve prion forming ability.  相似文献   

14.
Ure2p of Candida albicans (Ure2(albicans) or CaUre2p) can be a prion in Saccharomyces cerevisiae, but Ure2p of Candida glabrata (Ure2(glabrata)) cannot, even though the Ure2(glabrata) N-terminal domain is more similar to that of the S. cerevisiae Ure2p (Ure2(cerevisiae)) than Ure2(albicans) is. We show that the N-terminal N/Q-rich prion domain of Ure2(albicans) forms amyloid that is infectious, transmitting [URE3alb] to S. cerevisiae cells expressing only C. albicans Ure2p. Using solid-state nuclear magnetic resonance of selectively labeled C. albicans Ure2p(1-90), we show that this infectious amyloid has an in-register parallel β-sheet structure, like that of the S. cerevisiae Ure2p prion domain and other S. cerevisiae prion amyloids. In contrast, the N/Q-rich N-terminal domain of Ure2(glabrata) does not readily form amyloid, and that formed upon prolonged incubation is not infectious.  相似文献   

15.
The [URE3] prion of Saccharomyces cerevisiae shares many features with mammalian prions and poly-glutamine related disorders and has become a model for studying amyloid diseases. The development of the [URE3] phenotype is thought to be caused by a structural switch in the Ure2p protein. In [URE3] cells, Ure2p is found predominantly in an aggregated state, while it is a soluble dimer in wild-type cells. In vitro, Ure2p forms fibrils with amyloid-like properties. Several studies suggest that the N-terminal domain of Ure2p is essential for prion formation. In this work, we investigated the fibril formation of Ure2p by isolating soluble oligomeric species, which are generated during fibrillization, and characterized them with respect to size and structure. Our data support the critical role of the N-terminal domain for fibril formation, as we observed fibrils in the presence of 5 M guanidinium chloride, conditions at which the C-terminal domain is completely unfolded. Based on fluorescence measurements, we conclude that the structure of the C-terminal domain is very similar in dimeric and fibrillar Ure2p. When studying the time course of fibrillization, we detected the formation of small, soluble oligomeric species during the early stages of the process. Their remarkable resistance against denaturants, their increased content of beta-structure, and their ability to 'seed' Ure2p fibrillization suggest that conversion to the amyloid-like conformation has already occurred. Thus, they likely represent critical intermediates in the fibrillization pathway of Ure2p.  相似文献   

16.
The cellular chaperone machinery plays key role in the de novo formation and propagation of yeast prions (infectious protein). Though the role of Hsp70s in the prion maintenance is well studied, how Hsp90 chaperone machinery affects yeast prions remains unclear. In the current study, we examined the role of Hsp90 and its co-chaperones on yeast prions [PSI+] and [URE3]. We show that the overproduction of Hsp90 co-chaperone Tah1, cures [URE3] which is a prion form of native protein Ure2 in yeast. The Hsp90 co-chaperone Tah1 is involved in the assembly of small nucleolar ribonucleoproteins (snoRNP) and chromatin remodelling complexes. We found that Tah1 deletion improves the frequency of de novo appearance of [URE3]. The Tah1 was found to interact with Hsp70. The lack of Tah1 not only represses antagonizing effect of Ssa1 Hsp70 on [URE3] but also improves the prion strength suggesting role of Tah1 in both fibril growth and replication. We show that the N-terminal tetratricopeptide repeat domain of Tah1 is indispensable for [URE3] curing. Tah1 interacts with Ure2, improves its solubility in [URE3] strains, and affects the kinetics of Ure2 fibrillation in vitro. Its inhibitory role on Ure2 fibrillation is proposed to influence [URE3] propagation. The present study shows a novel role of Tah1 in yeast prion propagation, and that Hsp90 not only promotes its role in ribosomal RNA processing but also in the prion maintenance.SummaryPrions are self-perpetuating infectious proteins. What initiates the misfolding of a protein into its prion form is still not clear. The understanding of cellular factors that facilitate or antagonize prions is crucial to gain insight into the mechanism of prion formation and propagation. In the current study, we reveal that Tah1 is a novel modulator of yeast prion [URE3]. The Hsp90 co-chaperone Tah1, is required for the formation of small nucleolar ribonucleoprotein complex. We show that the absence of Tah1 improves the induction of [URE3] prion. The overexpressed Tah1 cures [URE3], and this function is promoted by Hsp90 chaperones. The current study thus provides a novel cellular factor and the underlying mechanism, involved in the prion formation and propagation  相似文献   

17.
Ure2, a regulator of nitrogen metabolism, is the protein determinant of the [URE3] prion state in Saccharomyces cerevisiae. Upon conversion into the prion form, Ure2 undergoes a heritable conformational change to an amyloid-like aggregated state and loses its regulatory function. A number of molecular chaperones have been found to affect the prion properties of Ure2. The studies carried out in our laboratory have been aimed at elucidating the structure of Ure2 fibrils, the mechanism of amyloid formation and the effect of chaperones on the fibril formation of Ure2.  相似文献   

18.
The yeast Saccharomyces cerevisiae contains in its proteome at least three prion proteins. These proteins (Ure2p, Sup35p, and Rnq1p) share a set of remarkable properties. In vivo, they form aggregates that self-perpetuate their aggregation. This aggregation is controlled by Hsp104, which plays a major role in the growth and severing of these prions. In vitro, these prion proteins form amyloid fibrils spontaneously. The introduction of such fibrils made from Ure2p or Sup35p into yeast cells leads to the prion phenotypes [URE3] and [PSI], respectively. Previous studies on evolutionary biology of yeast prions have clearly established that [URE3] is not well conserved in the hemiascomycetous yeasts and particularly in S. paradoxus. Here we demonstrated that the S. paradoxus Ure2p is able to form infectious amyloid. These fibrils are more resistant than S. cerevisiae Ure2p fibrils to shear force. The observation, in vivo, of a distinct aggregation pattern for GFP fusions confirms the higher propensity of SpUre2p to form fibrillar structures. Our in vitro and in vivo analysis of aggregation propensity of the S. paradoxus Ure2p provides an explanation for its loss of infective properties and suggests that this protein belongs to the non-prion amyloid world.  相似文献   

19.
Scrambled prion domains form prions and amyloid   总被引:1,自引:0,他引:1       下载免费PDF全文
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The amino-terminal prion domain of Ure2p is necessary and sufficient for prion formation and has a high glutamine (Q) and asparagine (N) content. Such Q/N-rich domains are found in two other yeast prion proteins, Sup35p and Rnq1p, although none of the many other yeast Q/N-rich domain proteins have yet been found to be prions. To examine the role of amino acid sequence composition in prion formation, we used Ure2p as a model system and generated five Ure2p variants in which the order of the amino acids in the prion domain was randomly shuffled while keeping the amino acid composition and C-terminal domain unchanged. Surprisingly, all five formed prions in vivo, with a range of frequencies and stabilities, and the prion domains of all five readily formed amyloid fibers in vitro. Although it is unclear whether other amyloid-forming proteins would be equally resistant to scrambling, this result demonstrates that [URE3] formation is driven primarily by amino acid composition, largely independent of primary sequence.  相似文献   

20.
The [URE3] prion is not conserved among Saccharomyces species   总被引:2,自引:2,他引:0       下载免费PDF全文
Talarek N  Maillet L  Cullin C  Aigle M 《Genetics》2005,171(1):23-34
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive form of the nitrogen catabolism regulator Ure2p. To determine whether the [URE3] prion is conserved in S. cerevisiae-related yeast species, we have developed genetic tools allowing the detection of [URE3] in Saccharomyces paradoxus and Saccharomyces uvarum. We found that [URE3] is conserved in S. uvarum. In contrast, [URE3] was not detected in S. paradoxus. The inability of S. paradoxus Ure2p to switch to a prion isoform results from the primary sequence of the protein and not from the lack of cellular cofactors as heterologous Ure2p can propagate [URE3] in this species. Our data therefore demonstrate that [URE3] is conserved only in a subset of Saccharomyces species. Implications of our finding on the physiological and evolutionary meaning of the yeast [URE3] prion are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号