首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Receptor-mediated endocytosis via clathrin-coated vesicles has been extensively studied and, while many of the protein players have been identified, much remains unknown about the regulation of coat assembly and the mechanisms that drive vesicle formation [1]. Some components of the endocytic machinery interact with inositol polyphosphates and inositol lipids in vitro, implying a role for phosphatidylinositols in vivo [2] and [3]. Specifically, the adaptor protein complex AP2 binds phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), PtdIns(3)P, PtdIns(3,4,5)P3 and inositol phosphates. Phosphatidylinositol binding regulates AP2 self-assembly and the interactions of AP2 complexes with clathrin and with peptides containing endocytic motifs [4] and [5]. The GTPase dynamin contains a pleckstrin homology (PH) domain that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to regulate GTPase activity in vitro [6] and [7]. However, no direct evidence for the involvement of phosphatidylinositols in clathrin-mediated endocytosis exists to date. Using well-characterized PH domains as high affinity and high specificity probes in combination with a perforated cell assay that reconstitutes coated vesicle formation, we provide the first direct evidence that PtdIns(4,5)P2 is required for both early and late events in endocytic coated vesicle formation.  相似文献   

3.
Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline- inducible promoter. Overexpression of wild-type dynamin had no effect. In contrast, coated pits failed to become constricted and coated vesicles failed to bud in cells overexpressing mutant dynamin so that endocytosis via both transferrin (Tfn) and EGF receptors was potently inhibited. Coated pit assembly, invagination, and the recruitment of receptors into coated pits were unaffected. Other vesicular transport pathways, including Tfn receptor recycling, Tfn receptor biosynthesis, and cathepsin D transport to lysosomes via Golgi-derived coated vesicles, were unaffected. Bulk fluid-phase uptake also continued at the same initial rates as wild type. EM immunolocalization showed that membrane-bound dynamin was specifically associated with clathrin-coated pits on the plasma membrane. Dynamin was also associated with isolated coated vesicles, suggesting that it plays a role in vesicle budding. Like the Drosophila shibire mutant, HeLa cells overexpressing mutant dynamin accumulated long tubules, many of which remained connected to the plasma membrane. We conclude that dynamin is specifically required for endocytic coated vesicle formation, and that its GTP binding and hydrolysis activities are required to form constricted coated pits and, subsequently, for coated vesicle budding.  相似文献   

4.
Syndapin I (SdpI) interacts with proteins involved in endocytosis and actin dynamics and was therefore proposed to be a molecular link between the machineries for synaptic vesicle recycling and cytoskeletal organization. We here report the identification and characterization of SdpII, a ubiquitously expressed isoform of the brain-specific SdpI. Certain splice variants of rat SdpII in other species were named FAP52 and PACSIN 2. SdpII binds dynamin I, synaptojanin, synapsin I, and the neural Wiskott-Aldrich syndrome protein (N-WASP), a stimulator of Arp2/3 induced actin filament nucleation. In neuroendocrine cells, SdpII colocalizes with dynamin, consistent with a role for syndapin in dynamin-mediated endocytic processes. The src homology 3 (SH3) domain of SdpI and -II inhibited receptor-mediated internalization of transferrin, demonstrating syndapin involvement in endocytosis in vivo. Overexpression of full-length syndapins, but not the NH(2)-terminal part or the SH3 domains alone, had a strong effect on cortical actin organization and induced filopodia. This syndapin overexpression phenotype appears to be mediated by the Arp2/3 complex at the cell periphery because it was completely suppressed by coexpression of a cytosolic COOH-terminal fragment of N-WASP. Consistent with a role in actin dynamics, syndapins localized to sites of high actin turnover, such as filopodia tips and lamellipodia. Our results strongly suggest that syndapins link endocytosis and actin dynamics.  相似文献   

5.
The formation of actin oligomers studied by analytical ultracentrifugation   总被引:2,自引:0,他引:2  
The small oligomers formed from Mg-G-actin under favorable conditions were studied by sedimentation velocity ultracentrifugation. The critical concentration of actin at pH 7.8 in the presence of 100 microM MgCl2 and 200 microM ATP was 12.5 +/- 2.8 microM. Under these conditions, about 15% of 7.5 microM Mg-actin was converted to oligomers of subunit size four to eight in 5 h at 20 degrees C. In 100 microM MgCl2 and no free ATP, the critical concentration was about 6.5 microM, and about 22% of 7.5 microM Mg-actin was converted to dimers in 80 min. There were no detectable higher oligomers or F-actin present in either case. As determined by the analysis of ATP hydrolysis, most, if not all, of the oligomer subunits contained ATP. When 28.5 microM actin was polymerized to steady state in 100 microM MgCl2 and 200 microM ATP, about 50% of the actin was present as F-actin, consistent with the critical concentration (approximately 12.5 microM), about 50% as oligomers as large as seven subunits, and only about 5% as monomers. When solutions containing oligomers were diluted the oligomers dissociated. Alternatively, when the MgCl2 concentration was raised to 1 mM, the solutions containing oligomers polymerized more rapidly than monomeric Mg-G-actin and to the same final steady state. These data are entirely consistent with the condensation-elongation model for helical polymerization proposed by Oosawa and Kasai (Oosawa, F., and Kasai, M. (1962) J. Mol. Biol. 4, 10-21) according to which, under certain conditions, substantial amounts of short linear and helical oligomers should be formed below the critical concentration and linear oligomers should coexist with monomers and F-actin at steady state.  相似文献   

6.
Clathrin-mediated endocytosis is a major pathway for uptake of lipid and protein cargo at the plasma membrane. The lattices of clathrin-coated pits and vesicles are comprised of triskelions, each consisting of three oligomerized heavy chains (HC) bound by a light chain (LC). In addition to binding HC, LC interacts with members of the Hip1/R family of endocytic proteins, including the budding yeast homologue, Sla2p. Here, using in vivo analysis in yeast, we provide novel insight into the role of this interaction. We find that overexpression of LC partially restores endocytosis to cells lacking clathrin HC. This suppression is dependent on the Sla2p binding region of LC. Using live cell imaging techniques to visualize endocytic vesicle formation, we find that the N-terminal Sla2p binding region of LC promotes the progression of arrested Sla2p patches that form in the absence of HC. We propose that LC binding to Sla2p positively regulates Sla2p for efficient endocytic vesicle formation.  相似文献   

7.
Induction of filopodia is dependent on activation of the small GTPase Cdc42 and on neural Wiskott-Aldrich-syndrome protein (N-WASP). Here we show that WASP-interacting protein (WIP) interacts directly with N-WASP and actin. WIP retards N-WASP/Cdc42-activated actin polymerization mediated by the Arp2/3 complex, and stabilizes actin filaments. Microinjection of WIP into NIH 3T3 fibroblasts induces filopodia; this is inhibited by microinjection of anti-N-WASP antibody. Microinjection of anti-WIP antibody inhibits induction of filopodia by bradykinin, by an active Cdc42 mutant (Cdc42(V12)) and by N-WASP. Our results indicate that WIP and N-WASP may act as a functional unit in filopodium formation, which is consistent with their role in actin-tail formation in cells infected with vaccinia virus or Shigella.  相似文献   

8.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

9.
Mutations in the budding yeast myosins-I (MYO3 and MYO5) cause defects in the actin cytoskeleton and in the endocytic uptake. Robust evidence also indicates that these proteins induce Arp2/3-dependent actin polymerization. Consistently, we have recently demonstrated, using fluorescence microscopy, that Myo5p is able to induce cytosol-dependent actin polymerization on the surface of Sepharose beads. Strikingly, we now observed that, at short incubation times, Myo5p induced the formation of actin foci that resembled the yeast cortical actin patches, a plasma membrane-associated structure that might be involved in the endocytic uptake. Analysis of the machinery required for the formation of the Myo5p-induced actin patches in vitro demonstrated that the Arp2/3 complex was necessary but not sufficient in the assay. In addition, we found that cofilin was directly involved in the process. Strikingly though, the cofilin requirement seemed to be independent of its ability to disassemble actin filaments and profilin, a protein that closely cooperates with cofilin to maintain a rapid actin filament turnover, was not needed in the assay. In agreement with these observations, we found that like the Arp2/3 complex and the myosins-I, cofilin was essential for the endocytic uptake in vivo, whereas profilin was dispensable.  相似文献   

10.
Abundant evidence has shown that the GTPase dynamin is required for receptor-mediated endocytosis, but its exact role in endocytic clathrin-coated vesicle formation remains to be established. Whereas dynamin GTPase domain mutants that are defective in GTP binding and hydrolysis are potent dominant-negative inhibitors of receptor-mediated endocytosis, overexpression of dynamin GTPase effector domain (GED) mutants that are selectively defective in assembly-stimulated GTPase-activating protein activity can stimulate the formation of constricted coated pits and receptor-mediated endocytosis. These apparently conflicting results suggest that a complex relationship exists between dynamin's GTPase cycle of binding and hydrolysis and its role in endocytic coated vesicle formation. We sought to explore this complex relationship by generating dynamin GTPase mutants predicted to be defective at distinct stages of its GTPase cycle and examining the structural intermediates that accumulate in cells overexpressing these mutants. We report that the effects of nucleotide-binding domain mutants on dynamin's GTPase cycle in vitro are not as predicted by comparison to other GTPase superfamily members. Specifically, GTP and GDP association was destabilized for each of the GTPase domain mutants we analyzed. Nonetheless, we find that overexpression of dynamin mutants with subtle differences in their GTPase properties can lead to the accumulation of distinct intermediates in endocytic coated vesicle formation.  相似文献   

11.
12.
Dunaevsky A 《Neuron》2004,44(2):216-218
Protrusive behavior of dendritic spines on developing neurons has been previously suggested to mediate the formation of new axodendritic synaptic contacts. A study by Zito et al. in this issue of Neuron links actin polymerization in dendritic spines with the motility that the spines exhibit and the synapses that they form.  相似文献   

13.
Endocytic vesicles undergo fission to sort ligand from receptor. Using quantitative immunofluorescence and video imaging, we provide the first in vitro reconstitution of receptor-ligand sorting in early endocytic vesicles derived from rat liver. We show that to undergo fission, presegregation vesicles must bind to microtubules (MTs) and move upon addition of ATP. Over 13% of motile vesicles elongate and are capable of fission. After fission, one vesicle continues to move, whereas the other remains stationary, resulting in their separation. On average, almost 90% receptor is found in one daughter vesicle, whereas ligand is enriched by approximately 300% with respect to receptor in the other daughter vesicle. Although studies performed on polarity marked MTs showed approximately equal plus and minus end-directed motility, immunofluorescence microscopy revealed that kinesins, but not dynein, were associated with these vesicles. Motility and fission were prevented by addition of 1 mM 5'-adenylylimido-diphosphate (AMP-PNP, an inhibitor of kinesins) or incubation with kinesin antibodies, but were unaffected by addition of 5 microM vanadate (a dynein inhibitor) or dynein antibodies. These studies indicate an essential role of kinesin-based MT motility in endocytic vesicle sorting, providing a system in which factors required for endocytic vesicle processing can be identified and characterized.  相似文献   

14.
《Developmental cell》2022,57(9):1132-1145.e5
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   

15.
Actin polymerization drives cell membrane protrusions and the propulsion of intracellular pathogens. The molecular mechanisms driving actin polymerization are not yet fully understood. Various mathematical models have been proposed to explain how cells convert chemical energy released upon actin polymerization into a pushing force on a surface. These models have attempted to explain puzzling properties of actin-based motility, including persistent attachment of the network to the membrane during propulsion and the interesting trajectories of propelled particles. These models fall generally into two classes: those requiring filament (+)-ends to fluctuate freely from the membrane to add subunits, and those where filaments elongate with their (+)-ends persistently associated with surface through filament end-tracking proteins ("actoclampin" models). This review compares and contrasts the key predictions of these two classes of models with regard to force-velocity profiles, and evaluates them with respect to experiments with biomimetic particles, and the experimental evidence on the role of end-tracking proteins such as formins and nucleation-promoting factors in actin-based motility.  相似文献   

16.
17.
Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)–endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.  相似文献   

18.
A number of unrelated bacterial species as well as vaccinia virus (ab)use the process of actin polymerization to facilitate and enhance their infection cycle. Studies into the mechanism by which these pathogens hijack and control the actin cytoskeleton have provided many interesting insights into the regulation of actin polymerization in migrating cells. This review focuses on what we have learnt from the actin-based motilities of Listeria, Shigella and vaccinia and discusses what we would still like to learn from our nasty friends, including enteropathogenic Escherichia coli and Rickettsia  相似文献   

19.
Mechanisms for the formation of ferritin oligomers   总被引:3,自引:0,他引:3  
Y Niitsu  I Listowsky 《Biochemistry》1973,12(23):4690-4695
  相似文献   

20.
Characterization of the mechanism of endocytic vesicle fusion in vitro   总被引:8,自引:0,他引:8  
A cell-free assay to monitor receptor-mediated endocytic processes has been developed that uses biotinylated transferrin and avidin-linked beta-galactosidase as receptor-associated and fluid-phase probes, respectively (Wessling-Resnick, M., and Braell, W. A. (1990) J. Biol. Chem. 265, 690-699). The fusion of vesicles from heterologous sources can be detected in this assay: endocytic vesicles from K562 cells (a human cell line) will fuse with vesicles from Chinese hamster ovary cells. Fusion between endocytic vesicles is inhibited upon treatment with N-ethylmaleimide but can be restored by the addition of untreated cytosol from either cell type. The in vitro fusion reaction is also inhibited by the nonhydrolyzable nucleotide analogs guanosine 5'-(3-thiotriphosphate) (GTP gamma S) and adenosine 5'-(3-thiotriphosphate) (ATP gamma S). Other nonhydrolyzable guanine nucleotides are found to inhibit the in vitro reaction in the following order of potency: GTP gamma S greater than 5'-guanylyl imidodiphosphate (GTP-PNP) greater than alpha,beta-methylene GTP (GTP-PCP). The inhibitory effects of the nonhydrolyzable analogs of GTP and ATP are not additive. Moreover, excess GTP relieves the inhibition by GTP gamma S more than it relieves the inhibition by ATP gamma S, while excess ATP preferentially alleviates ATP gamma S (not GTP gamma S) inhibition. These properties suggest that the two nucleotides exert their effects at distinct points in the fusion process. Although micromolar levels of excess Ca2+ also inhibit vesicle fusion, the inhibition exerted by GTP gamma S appears to proceed via a pathway independent of the divalent cation. The GTP gamma S-sensitive step in endocytic vesicle fusion is found to occur at a mechanistic stage prior to and distinct from the N-ethylmaleimide-sensitive step of the reaction. This situation permits the accumulation of a membrane vesicle intermediate in the presence of GTP gamma S; subsequent incubation of these vesicles with cytosol and GTP restores their fusion competence. Characteristics of in vitro endocytic vesicle fusion suggest that similarities exist with steps of the fusion mechanism involved with membrane traffic events of the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号