首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a study of X-ray-induced chromosome aberrations in human G(0) lymphocytes irradiated with 4 Gy using premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH), the time-dependent pattern of chromosome fragments and interchromosomal exchanges involving chromosome 4 was recorded after postirradiation incubation times varying from 0.5 to 46.5 h. Unattached acentric fragments and incomplete interchromosomal exchanges have high initial yields, followed by an exponential decrease, while complete interchromosomal exchanges have almost zero initial yield with a subsequent increase in their number. Plateau values of all yields are reached after about 25 h. This temporal variation of aberration yields can consistently be explained by the competition of disruptive PCC stress with the progress of postirradiation structural restitution at the sites of radiation-induced chromatin instabilities. Details of the temporal pattern of incomplete exchanges reflect the different kinetics of the alpha and beta components of the yield of aberrations. The observed large difference between late-PCC and metaphase yields of unattached acentric fragments and the almost perfect conversion from incomplete prematurely condensed chromosomes into complete metaphase exchanges are explained by a difference in the magnitude of chromosome condensation stress between PCC and mitotic conditions. Chromatin sites prone to fragmentation and incompleteness under conditions of PCC can therefore persist as genetic instabilities hidden during mitosis.  相似文献   

2.
It is shown by the study of the location of acentric fragments of chromosomes at metaphase and anaphase in the root cells of pea (cultivar "Capital"), in the cornea of rats (strain Wistar), in the bone marrow of mice (strain BALB), in the cultures of embryonic fibroblasts of mice (strain C57B1) and of embryonic human fibroblasts that some fragments are situated outside the equatorial plates, while others are situated within the plane of the equatorial plate. The fragments of the first type initiate mainly spontaneously, while the fragments of the second type are mainly induced by irradiation. These priniciples are observed in all the types of animan non-radiated cells could be explained if it be assumed, that all the chromosome breaks are realized before the prometaphase and by the beginning of the prometaphase the fragments are randomly distributed within the volume of the nucleus. At the prometaphase most fragments move from the equator to the pole of the cell and thus at the metaphase and anaphase are found to be located outside the equatorial plate. For the explanation of the observed ratio of the two types of fragments in an irradiated cell it is assumed that chromosome fragments resulting from breaks induced by irradiation are completely detached from chromosomes only after the beginning of the prometaphase. Possibly, the process of development of breaks is alsonot yet completed by this time, it continues and is completed at the metaphase, partially, at the anaphase of the mitosis.  相似文献   

3.
The rate of structural chromosome mutations at metaphase of the first mitosis was determined in culture of embrionic mouse fibroblasts after UV-irradiation during the S-period (lambda = 265 nm at an incident dose of 40 erg/mm2). It is established that the mutation rate is higher at late metaphase than at early metaphase. After the cell treatment with intercalating compounds (actinomycin D, acridine orange or ethidium bromide) at metaphase, the rate of UV-induced chromosome aberrations was decreased (about 2-fold). It is concluded from the results obtained that the majority of aberrations arise during metaphase after UV-irradiation in the process of DNA synthesis. After the cell treatment with o-methylhydroxylamine (OMHA) during the S-period the rate of structural mutations was the same at late and early metaphases. This rate was not affected by the caffeine treatment at metaphase; during this stage the acentric chromosome fragments lie outside the equatorial plate, which is an indication that the OMHA-induced aberrations, in contrast to the UV-induced aberrations, are formed before the beginning of metaphase, possibly during the interphase. It is suggested that the chromosome condensation during metaphase is of importance in the formation of structural mutations.  相似文献   

4.
Long-term cytogenetic monitoring was carried out in adolescents of the town of Kemerovo. In total, aberrant metaphase frequency increased from 1.53% in 1992 to 4.40% in 1996 in Kemerovo adolescents, being significantly higher than a control frequency from 1993 to 1996. In all samples, chromosome aberrations mostly included acentric fragments, while exchanges were rare. The highest number of aberrations per aberrant metaphase was 2 in Kemerovo adolescents and 1 in the control sample. The observed increase in total number of chromosome aberrations suggests that the mutagenic effect of chemical environmental pollutants on Kemerovo adolescents increased over the five years.  相似文献   

5.
Volkov AN  Druzhinin VG 《Genetika》2001,37(9):1296-1299
Long-term cytogenetic monitoring was carried out in adolescents of the town of Kemerovo. In total, aberrant metaphase frequency increased from 1.53% in 1992 to 4.40% in 1996 in Kemerovo adolescents, being significantly higher than a control frequency from 1993 to 1996. In all samples, chromosome aberrations mostly included acentric fragments, while exchanges were rare. The highest number of aberrations per aberrant metaphase was 2 in Kemerovo adolescents and 1 in the control sample. The observed increase in total number of chromosome aberrations suggests that the mutagenic effect of chemical environmental pollutants on Kemerovo adolescents increased over the five years.  相似文献   

6.
The aim of the study was to compare the spontaneous and ex vivo radiation-induced chromosomal damage in lymphocytes of untreated prostate cancer patients and age-matched healthy donors, and to evaluate the chromosomal damage, induced by radiotherapy, and its persistence. Blood samples from 102 prostate cancer patients were obtained before radiotherapy to investigate the excess acentric fragments and dicentric chromosomes. In addition, in a subgroup of ten patients, simple exchanges in chromosomes 2 and 4 were evaluated by fluorescent in situ hybridization (FISH), before the onset of therapy, in the middle and at the end of therapy, and 1 year later. Data were compared to blood samples from ten age-matched healthy donors. We found that spontaneous yields of acentric chromosome fragments and simple exchanges were significantly increased in lymphocytes of patients before onset of therapy, indicating chromosomal instability in these patients. Ex vivo radiation-induced aberrations were not significantly increased, indicating proficient repair of radiation-induced DNA double-strand breaks in lymphocytes of these patients. As expected, the yields of dicentric and acentric chromosomes, and the partial yields of simple exchanges, were increased after the onset of therapy. Surprisingly, yields after 1 year were comparable to those directly after radiotherapy, indicating persistence of chromosomal instability over this time. Our results indicate that prostate cancer patients are characterized by increased spontaneous chromosomal instability. This instability seems to result from defects other than a deficient repair of radiation-induced DNA double-strand breaks. Radiotherapy-induced chromosomal damage persists 1 year after treatment.  相似文献   

7.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

8.
BACKGROUND: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. RESULTS: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. CONCLUSIONS: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.  相似文献   

9.
Premature chromosome condensation (PCC) experiments using human lymphocytes with centromere staining have shown that after exposure to 3.45 MeV alpha-particle radiation, the full number of dicentric chromosomes appears when the cell fusion protocol is applied immediately after irradiation. In this case, the time available for repair and misrepair of DNA damage is only about 30 min. The number of dicentrics does not change with a further increase in the time available for chromatin rearrangement. This fast response confirms the expectation based on our previous experiments using PCC with 150 kV X rays in which the alpha component of the yield of dicentrics was found to appear when the cell fusion protocol was applied immediately after irradiation, whereas the beta component was delayed by several hours. The time constant for rejoining of the excess acentric chromosome fragments is found to be donor-specific and not to differ for alpha particles and X rays, but alpha-particle radiation leaves a larger fraction of the excess acentric fragments unrejoined. The RBEs of the 3.45 MeV alpha-particle radiation compared to 150 kV X rays, evaluated for the alpha component for the yield of dicentrics and for the yield of unrepaired acentric fragments, have almost equal values of about 4. This is consistent with data in the literature on chromosome aberrations observed in metaphase that show the equality of the RBE values for production of dicentrics and acentric fragments. Our experimental results concerning the fast kinetics of the alpha component of the yield of exchange-type chromosome aberrations are not consistent with Lea's pairwise lesion interaction model, and they support the proposed alternative mechanism of lesion-nonlesion interaction between chromatin regions carrying clustered DNA damage and intact chromatin regions.  相似文献   

10.
Fluorescence in situ hybridization (FISH) with a telomeric peptide nucleic acid (PNA) probe was employed to analyze the induction of incomplete chromosome elements (ICE, i.e., unjoined or “open” chromosome elements with telomeric signal at only one end) and excess acentric fragments (i.e., in excess of fragments resulting from the formation of dicentric and ring chromosomes) by the methylating agent streptozotocin (STZ) in a Chinese hamster embryo (CHE) cell line. CHE cells were treated with 0–4 mM STZ and chromosomal aberrations were analyzed in the first mitosis after treatment using the telomeric probe. Centric (incomplete chromosomes) and acentric (terminal fragments) ICE were the only unstable chromosome-type aberrations induced by STZ in CHE cells. The induction of these aberrations exhibited a curvilinear concentration–response relationship. About 40% of the metaphases present in cell cultures treated with STZ contained one or more pairs of ICE. In STZ-treated cells, ICE were always observed as pairs consisting of an incomplete chromosome and a terminal fragment. Moreover, all of the excess acentric fragments induced by STZ were of terminal type. These results indicate that chromosomal incompleteness is a very common event following exposure to STZ and suggest that all of the excess acentric fragments induced by STZ originate from terminal deletions.  相似文献   

11.
Radiobiological effects of a low-energy ion beam on wheat   总被引:14,自引:0,他引:14  
The radiobiological effects of a low-energy nitrogen ion (N+) beam on wheat were studied, particularly with regard to the induction of chromosome aberrations. The results demonstrated that the three test varieties showed different sensitivities to ion implantation, and a higher dose of ion implantation had a marked effect on the germination and survival rate of the seeds exposed. The germination rate and survival rate curve basically followed a similar trend in the same variety. Cytological analysis indicated that ion beams were effective in producing chromosome aberrations. The frequencies of mitotic or meiotic cells with chromosome aberrations increased linearly with increasing doses. The aberration types included, for example, acentric fragments, chromosome deletions, lagging chromosomes, chromosome bridges and micronuclei. In the root tip cells, aberrations chiefly consisted of acentric fragments and deletions. Chromosome bridges and lagging chromosomes were the main aberration phenomena observed in the pollen mother cells. The highest frequencies of root tip cells and pollen mother cells with chromosome aberrations were 15.2% and 39.8%, respectively. Changes in morphology and mutant were also observed in the plants derived from exposed seeds. Received: 10 April 2000 / Accepted: 10 October 2000  相似文献   

12.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

13.
Normal T-lymphocytes, B-cell line (CCRF-SB) and T-cell line (CCRF-HSB-2) cells, all diploid in their chromosome constitution, were exposed in vitro to various doses of X-ray and analyzed at their first mitotic division for structural chromosome abnormalities. The irradiation effects were determined also by a viability test of the cells, using trypan blue dye. The irradiated T-cell line (CCRF-HSB-2) showed a remarkably high frequency of chromosome aberrations, including chromosome and chromatid deletions, chromatid exchanges, dicentrics, rings and acentric fragments. On the other hand, the chromosome aberrations observed in the irradiated B-cell line and normal T-lymphocytes consisted mainly of dicentrics, rings, deletions and acentric fragments; the frequency of chromosome and chromatid deletions was low as compared to that of the T-cell line. The cell viability test showed a singificantly higher percent reduction of viable cells at every dose of X-ray in the irradiated T-cell line than in the B-cell line or the normal T-lymphocytes. It is possible that the increased radiosensitivity of the T-cell line is related to the original malignant nature of the cells, which originated from the lymphocytes of a patient with acute lymphoblastic leukemia.  相似文献   

14.
20,1% cells with chromosomes aberrations were obtained after UV-irradiation of embryonal fibroblasts of mice at the S-stage in vitro at a decreasing dose of 40erg/mm2. Subsequent gamma-irradiation at the metaphase of the first mitosis at a 5 krad dose led to a statistically significant decrease of the frequency of aberrant cells observed in the same mitosis down to 11,7%. The frequency of spontaneous aberrations did not change during the first few minutes after gamma-irradiation of intact cells at the metaphase. The "protective" effect of gamma-rays can not be explained either by unequal changes of the duration of mitotic stages for aberrant and normal cells, or by sticking of chromosome fragments or by breaks of bridges at the anaphase. The death of cells "under irradiation" also appears to be a hardly probable case of the effect observed. It is assumed that the decrease of the aberrations frequency is the result of predicted earlier modification of the processes of realization of potential chromosome damages into visible aberrations at the metaphase.  相似文献   

15.
The frequency of structural chromosome aberrations and sister-chromatid exchanges in peripheral blood lymphocytes of nurses handling cytostatic drugs without a safety cover is compared with that of individuals doing this work exclusively under a safety cover and with that of nurses working under similar conditions but not handling cytostatics. The mean yield of dicentric chromosomes, (4.3 +/- 0.7)/1000 cells, and acentric fragments, (15.4 +/- 1.4)/1000 cells, in the occupationally exposed group is significantly increased in comparison to individuals working with protection (dic: (1.1 +/- 0.4)/1000 cells, ace: (11.2 +/- 1.2)/1000 cells) and nurses not handling cytostatics (dic: (2.1 +/- 0.5)/1000 cells, ace: (9.9 +/- 1.1)/1000 cells). The frequency of chromatid breaks and SCE is not significantly different between these groups (p greater than 0.05).  相似文献   

16.
Radiation-reduced chromosomes provide valuable reagents for cloning and mapping genes, but they require multiple rounds of x-ray deletion mutagenesis to excise unwanted chromosomal DNA while maintaining physical attachment of the desired DNA to functional host centromere and telomere sequences. This requirement for chromosomal rearrangements can result in undesirable x-ray induced chromosome chimeras where multiple non-contiguous chromosomal fragments are fused. We have developed a cloning system for maintaining large donor subchromosomal fragments of mammalian DNA in the megabase size range as acentric chromosome fragments (double-minutes) in cultured mouse cells. This strategy relies on randomly inserted selectable markers for donor fragment maintenance. As a test case, we have cloned random segments of Chinese hamster ovary (CHO) chromosomal DNA in mouse EMT-6 cells. This was done by cotransfecting plasmids pZIPNeo and pSV2dhfr into DHFR-CHO cells followed by isolation of a Neo + DHFR + CHO donor colony and radiation-fusion-hybridization (RFH) to EMT-6 cells. We then selected for initial resistance to G418 and then to increasing levels of methotrexate (MTX). Southern analysis of pulsed-field gel electrophoresis of rare-cutting restriction endonuclease digestions of DNA from five RFH isolates indicated that all five contain at least 600 kb of unrearranged CHO DNA. In situ hybridization with the plasmids pZIPNeo and pSV2dhfr to metaphase chromosomes of MTX-resistant hybrid EMT-6 lines indicated that these markers reside on double-minute chromosomes.  相似文献   

17.
A cytogenetic analysis was performed on peripheral blood lymphocytes from 183 Chernobyl clean-up workers and 27 control individuals. Increased frequencies of chromosome aberrations were associated with exposure to radiation at Chernobyl, alcohol abuse and a history of recent influenza infection. However, only approximately 20% of Chernobyl clean-up workers had an increased frequency of dicentric and ring chromosomes. At the same time, an increased frequency of acentric fragments in lymphocytes of clean-up workers was characteristic. The use of multivitamins as dietary supplement significantly decreased the frequency of chromosome aberrations, especially of chromatid breaks. Rogue cells were found in lymphocytes of 28 clean-up workers and 3 control individuals. The appearance of rogue cells was associated with a recent history of acute respiratory disease (presumably caused by adenoviral infection) and, probably, alcohol abuse. Dicentric chromosomes in rogue cells were distributed according to a negative binomial distribution. Occurrence of rogue cells due to a perturbation of cell cycle control and abnormal apoptosis is suggested.  相似文献   

18.
《The Journal of cell biology》1996,132(6):1093-1104
The force for poleward chromosome motion during mitosis is thought to act, in all higher organisms, exclusively through the kinetochore. We have used time-lapse. video-enhanced, differential interference contrast light microscopy to determine the behavior of kinetochore-free "acentric" chromosome fragments and "monocentric" chromosomes containing one kinetochore, created at various stages of mitosis in living higher plant (Haemanthus) cells by laser microsurgery. Acentric fragments and monocentric chromosomes generated during spindle formation and metaphase both moved towards the closest spindle pole at a rate (approximately 1.0 microm/min) similar to the poleward motion of anaphase chromosomes. This poleward transport of chromosome fragments ceased near the onset of anaphase and was replaced. near midanaphase, by another force that now transported the fragments to the spindle equator at 1.5-2.0 microm/min. These fragments then remained near the spindle midzone until phragmoplast development, at which time they were again transported randomly poleward but now at approximately 3 microm/min. This behavior of acentric chromosome fragments on anastral plant spindles differs from that reported for the astral spindles of vertebrate cells, and demonstrates that in forming plant spindles, a force for poleward chromosome motion is generated independent of the kinetochore. The data further suggest that the three stages of non- kinetochore chromosome transport we observed are all mediated by the spindle microtubules. Finally, our findings reveal that there are fundamental differences between the transport properties of forming mitotic spindles in plants and vertebrates.  相似文献   

19.
By means of combined experiments of X-irradiation and 3H-thymidine labeling of the chromosomes which are in the phase of synthesis, and the subsequent analysis at metaphase on the autoradiographs of the chromosomal damage induced during interphase, it was shown that in somatic cells from a quasi-diploid Chinese hamster line cultured in vitro the chromosomes change their response to radiation from single (chromosome type aberrations) to double (chromatid type aberrations) in late G1. These results are interpreted to indicate that the chromosome splits into two chromatids in G1, before DNA replication. — By extending the observations at the second metaphase after irradiation, it was also seen that cells irradiated while in G2 or late S when they reach the second post-irradiation mitosis still exhibit, beside chromosome type aberrations, many chromatid exchanges, some of which are labeled. Two hypotheses are suggested to account for this unexpected reappearance of chromatid aberrations at the second post-irradiation division. The first hypothesis is that they arise from half-chromatid aberrations. The second hypothesis, which derives from a new interpretation of the mechanisms of production of chromosome aberrations recently forwarded by Evans, is that they arise from gaps or achromatic lesions which undergo, as the cells go through the next cycle, a two-step repair process culminating in the production of aberrations.This work was supported in part by grant No. RH-00304 from the Division of Radiological Health, Bureau of State Services, Public Health Service, U.S.A.  相似文献   

20.
We applied a combination of laser microsurgery and quantitative polarization microscopy to study kinetochore-independent forces that act on chromosome arms during meiosis in crane fly spermatocytes. When chromosome arms located within one of the half-spindles during prometa- or metaphase were cut with the laser, the acentric fragments (lacking kinetochores) that were generated moved poleward with velocities similar to those of anaphase chromosomes (approximately 0.5 microm/min). To determine the mechanism underlying this poleward motion of detached arms, we treated spermatocytes with the microtubule-stabilizing drug taxol. Spindles in taxol-treated cells were noticeably short, yet with polarized light, the distribution and densities of microtubules in domains where fragment movement occurred were not different from those in control cells. When acentric fragments were generated in taxol-treated spermatocytes, 22 of 24 fragments failed to exhibit poleward motion, and the two that did move had velocities attenuated by 80% (to approximately 0.1 microm/min). In these cells, taxol did not inhibit the disjunction of chromosomes nor prevent their poleward segregation during anaphase, but the velocity of anaphase was also decreased 80% (approximately 0.1 microm/min) relative to untreated controls. Together, these data reveal that microtubule flux exerts pole-directed forces on chromosome arms during meiosis in crane fly spermatocytes and strongly suggest that the mechanism underlying microtubule flux also is used in the anaphase motion of kinetochores in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号