首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence, microenvironment, and proximity of an essential Trp with the essential His and Cys residues in the active site of an alkaline protease have been demonstrated for the first time using chemical modification, chemo-affinity labeling, and fluorescence spectroscopy. Kinetic analysis of the N-bromosuccinimide- (NBS) or p-hydroxymercuribenzoate- (PHMB) modified enzyme from Conidiobolus sp. revealed that a single Trp and Cys are essential for activity in addition to the Asp, His, and Ser residues of the catalytic triad. Full protection by casein against inactivation of the enzyme by NBS and quenching of Trp fluorescence upon binding of the enzyme with NBS, substrate (sAAPF-pNA), or inhibitor (SSI) confirmed participation of the Trp residue at the substrate/inhibitor binding site of the alkaline protease. Comparison of the K(sv) values for the charged quenchers CsCI (1.66) and KI (7.0) suggested that the overall Trp microenvironment in the protease is electropositive. The proximity of Trp with His was demonstrated by the sigmoidal shape of the pH-dependent fluorometric titration curve with a pK(F) of 6.1. The vicinity of Trp with Cys was indicated by resonance energy transfer between the intrinsic fluorophore (Trp) and 5-iodoacetamide-fluorescein labeled Cys (extrinsic fluorophore). Our results on the proximity of Trp with essential His and Cys thus confirm the presence of Trp in the active site of the alkaline protease.  相似文献   

2.
The gene coding for thermophilic xylose (glucose) isomerase of Clostridium thermosulfurogenes was isolated and its complete nucleotide sequence was determined. The structural gene (xylA) for xylose isomerase encodes a polypeptide of 439 amino acids with an estimated molecular weight of 50,474. The deduced amino acid sequence of thermophilic C. thermosulfurogenes xylose isomerase displayed higher homology with those of thermolabile xylose isomerases from Bacillus subtilis (70%) and Escherichia coli (50%) than with those of thermostable xylose isomerases from Ampullariella (22%), Arthrobacter (23%), and Streptomyces violaceoniger (24%). Several discrete regions were highly conserved throughout the amino acid sequences of all these enzymes. To identify the histidine residue of the active site and to elucidate its function during enzymatic xylose or glucose isomerization, histidine residues at four different positions in the C. thermosulfurogenes enzyme were individually modified by site-directed mutagenesis. Substitution of His101 by phenylalanine completely abolished enzyme activity whereas substitution of other histidine residues by phenylalanine had no effect on enzyme activity. When His101 was changed to glutamine, glutamic acid, asparagine, or aspartic acid, approximately 10-16% of wild-type enzyme activity was retained by the mutant enzymes. The Gln101 mutant enzyme was resistant to diethylpyrocarbonate inhibition which completely inactivated the wild-type enzyme, indicating that His101 is the only essential histidine residue involved directly in enzyme catalysis. The constant Vmax values of the Gln101, Glu101, Asn101, and Asp101 mutant enzymes over the pH range of 5.0-8.5 indicate that protonation of His101 is responsible for the reduced Vmax values of the wild-type enzyme at pH below 6.5. Deuterium isotope effects by D-[2-2H]glucose on the rate of glucose isomerization indicated that hydrogen transfer and not substrate ring opening is the rate-determining step for both the wild-type and Gln101 mutant enzymes. These results suggest that the enzymatic sugar isomerization does not involve a histidine-catalyzed proton transfer mechanism. Rather, essential histidine functions to stabilize the transition state by hydrogen bonding to the C5 hydroxyl group of the substrate and this enables a metal-catalyzed hydride shift from C2 to C1.  相似文献   

3.
Glutathione S-transferase P (GST-P) exists as a homodimeric form and has two tryptophan residues, Trp28 and Trp38, in each subunit. In order to elucidate the role of the two tryptophan residues in catalytic function, we examined intrinsic fluorescence of tryptophan residues and effect of chemical modification by N-bromosuccinimide (NBS). The quenching of intrinsic fluorescence was observed by the addition of S-hexylglutathione, a substrate analogue, and the enzymatic activity was totally lost when single tryptophan residue was oxidized by NBS. To identify which tryptophan residue is involved in the catalytic function, each tryptophan was changed to histidine by site-directed mutagenesis. Trp28His GST-P mutant enzyme showed a comparable enzymatic activity with that of the wild type one. Trp38His mutant neither was bound to S-hexylglutathione-linked Sepharose nor exhibited any GST activity. These findings indicate that Trp38 is important for the catalytic function and substrate binding of GST-P.  相似文献   

4.
Analysis of sequence alignments of alkaline phosphatases revealed a correlation between metal specificity and certain amino acid side chains in the active site that are metal-binding ligands. The Zn(2+)-requiring Escherichia coli alkaline phosphatase has an Asp at position 153 and a Lys at position 328. Co(2+)-requiring alkaline phosphatases from Thermotoga maritima and Bacillus subtilis have a His and a Trp at these positions, respectively. The mutations D153H, K328W, and D153H/K328W were induced in E. coli alkaline phosphatase to determine whether these residues dictate the metal dependence of the enzyme. The wild-type and D153H enzymes showed very little activity in the presence of Co(2+), but the K328W and especially the D153H/K328W enzymes effectively use Co(2+) for catalysis. Isothermal titration calorimetry experiments showed that in all cases except for the D153H/K328W enzyme, a possible conformation change occurs upon binding Co(2+). These data together indicate that the active site of the D153H/K328W enzyme has been altered significantly enough to allow the enzyme to utilize Co(2+) for catalysis. These studies suggest that the active site residues His and Trp at the E. coli enzyme positions 153 and 328, respectively, at least partially dictate the metal specificity of alkaline phosphatase.  相似文献   

5.
Comparative studies of intrinsic and extrinsic fluorescence of apyrases purified from two potato tuber varieties (Pimpernel and Desirée) were performed to determine differences in the microenvironment of the nucleotide binding site. The dissociation constants (K(d)) of Pimpernel apyrase for the binding of different fluorescent substrate analogs: methylanthranoyl (MANT-), trinitrophenyl (TNP-), and epsilon -derivatives of ATP and ADP were determined from the quenching of Trp fluorescence, and compared with K(d) values previously reported for Desirée enzyme. Binding of non-fluorescent substrate analogues decreased the Trp emission of both isoapyrases, indicating conformational changes in the vicinity of these residues. Similar effect was observed with fluorescent derivatives where, in the quenching effect, the transfer of energy from tryptophan residues to the fluorophore moiety could be additionally involved. The existence of energy transfer between Trp residues in the Pimpernel enzyme was demonstrated with epsilon -analogues, similar to our previous observations with the Desirée. From these results we deduced that tryptophan residues are close to or in the nucleotide binding site in both enzymes. Experiments with quenchers like acrylamide, Cs(+) and I(-), both in the presence and absence of nucleotide analogues, suggest the existence of differences in the nucleotide binding site of the two enzymes. From the results obtained in this work, we can conclude that the differences found in the microenvironment of the nucleotide binding site can explain, at least in part, the kinetic behaviour of both isoenzymes.  相似文献   

6.
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.  相似文献   

7.
Bromomethyl ketone derivatives of L-valine (VBMK), L-isoleucine (IBMK), L-norleucine (NleBMK) and L-phenylalanine (FBMK) were synthesized. These reagents were used for qualitative comparative labeling of Escherichia coli valyl-tRNA synthetase (ValRS), an enzyme with Val/Ile editing activity, in order to identify the binding sites for L-valine or noncognate amino acids. Labeling of E. coli ValRS with the substrate analog valyl-bromomethyl ketone (VBMK) resulted in a complete loss of valine-dependent isotopic [32P]PPi-ATP exchange activity. L-Valine protected the enzyme against inactivation. Noncognate amino acids analogs isoleucyl-, norleucyl- and phenylalanyl-bromomethyl ketones (IBMK, NleBMK and FBMK) were also capable of abolishing the activity of ValRS, FBMK being less efficient in inactivating the synthetase. Matrix-assisted laser desorption-ionization mass spectrometry designated cysteines 424 and 829 as the target residues of the substrate analog VBMK on E. coli ValRS, whereas, altogether, IBMK, NleBMK and FBMK labeled His266, Cys275, His282, His433 and Cys829, of which Cys275, His282 and His433 were labeled in common by all three noncognate amino-acid-derived bromomethyl ketones. With the exception of Cys829, which was most likely unspecifically labeled, the amino-acid residues labeled by the reagents derived from noncognate amino acids were distributed between two fragments 259-291 and 419-434 in the primary structure of E. coli ValRS. In fragment 419-434, Cys424 was specifically labeled by the substrate analog VBMK, while His433 was labeled in common by all the used bromomethyl ketone derivatives of noncognate amino acids, suggesting that the synthetic site where aminoacyl adenylate formation takes place on E. coli ValRS is built up of two subsites. One subsite containing Cys424 might represent the catalytic locus of the active center where specific L-valine activation takes place. The second subsite containing His433 might represent the binding site for noncognate amino acids. The fact that Cys275 and His282, fragment 259-291, were labeled by IBMK, NleBMK and FBMK, but not by the substrate analog VBMK, suggests that these residues might be located at or near the editing site of E. coli ValRS. Comparison of fragment 259-291 with all the available ValRS amino-acid sequences revealed that His282 is strictly conserved, with the exception of its replacement by a glycine in a subgroup corresponding to the archaebacteria. Because a nucleophile is needed in the editing site to achieve hydrolysis of an undesired product at the level of the carbonyl group thereof, it is proposed that the conserved His282 of E. coli ValRS is involved in editing.  相似文献   

8.
Three-dimensional structural model of epoxide hydrolase (PchEHA) from Phanerochaete chrysosporium was constructed based on X-ray structure of Agrobacterium radiobacter AD1 sEH using SWISS-MODEL server. Conserved residues constituting the active site cavity were identified, of which the functional roles of 14 residues were determined by site-directed mutagenesis. In catalytic triad, Asp105 and His308 play a leading role in alkylation and hydrolysis steps, respectively. Distance between Asp105 and epoxide ring of substrate may determine the regiospecificity in the substrate docking model. Asp277 located at the entrance of substrate tunnel is concerned with catalysis but not essential. D307E had the highest activity and lower enantioselectivity among 14 mutants, suggesting Asp307 may be involved in choice of substrate configuration. Y159F and Y241F almost exhibited no activity, indicating that they are essential to bind substrate and facilitate opening of epoxide ring. Besides, His35-Gly36-Asn37-Pro38, Trp106 and Trp309 surrounding Asp105, may coordinate the integration of active site cavity and influence substrate binding. Especially, W106I reversed the enantioselectivity, perhaps due to more deteriorative impact on the preferred (R)-styrene oxide. Gly65 and Gly67 occurring at β-turns and Gly36 are vital in holding protein conformation. Conclusively, single conserved residue around the active sites has an important impact on catalytic properties.  相似文献   

9.
Fetler L  Tauc P  Hervé G  Cunin R  Brochon JC 《Biochemistry》2001,40(30):8773-8782
The homotropic and heterotropic interactions in Escherichia coli aspartate transcarbamylase (EC 2.1.3.2) are accompanied by various structure modifications. The large quaternary structure change associated with the T to R transition, promoted by substrate binding, is accompanied by different local conformational changes. These tertiary structure modifications can be monitored by fluorescence spectroscopy, after introduction of a tryptophan fluorescence probe at the site of investigation. To relate unambiguously the fluorescence signals to structure changes in a particular region, both naturally occurring Trp residues in positions 209c and 284c of the catalytic chains were previously substituted with Phe residues. The regions of interest were the so-called 240's loop at position Tyr240c, which undergoes a large conformational change upon substrate binding, and the interface between the catalytic and regulatory chains in positions Asn153r and Phe145r supposed to play a role in the different regulatory processes. Each of these tryptophan residues presents a complex fluorescence decay with three to four independent lifetimes, suggesting that the holoenzyme exists in slightly different conformational states. The bisubstrate analogue N-phosphonacetyl-L-aspartate affects mostly the environment of tryptophans at position 240c and 145r, and the fluorescence signals were related to ligand binding and the quaternary structure transition, respectively. The binding of the nucleotide activator ATP slightly affects the distribution of the conformational substates as probed by tryptophan residues at position 240c and 145r, whereas the inhibitor CTP modifies the position of the C-terminal residues as reflected by the fluorescence properties of Trp153r. These results are discussed in correlation with earlier mutagenesis studies and mechanisms of the enzyme allosteric regulation.  相似文献   

10.
Sheng Y  Khanam N  Tsaksis Y  Shi XM  Lu QS  Bognar AL 《Biochemistry》2008,47(8):2388-2396
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.  相似文献   

11.
Human pancreatic lipase (HPL, triacylglycerol acylhydrolase, EC 3.1.1.3) is a carboxyl esterase which hydrolyzes insoluble emulsified triglycerides and is essential for the efficient digestion of dietary fats. Though the three-dimensional structure of this enzyme has been determined, monitoring the conformational changes that may accompany the binding of various substrates and inhibitors is still of interest. Because of its sensitivity and ease of use, fluorescence spectroscopy of the intrinsic Trp residues is ideally suited for this purpose. However, the presence of seven Trp residues spread all over the HPL structure renders the interpretation of the fluorescence changes difficult with respect to the identification and location of the conformational or environmental changes taking place at the various Trp residues. In this context, the aim of this work was to investigate the contribution of the individual Trp residues to the fluorescence properties of HPL. To this end, we analyzed the steady-state and time-resolved fluorescence parameters of five single-point mutants in which one Trp residue was substituted with a weakly fluorescent Phe residue. In addition to the Trp residues at positions 30, 86, and 252, strategically located with respect to the active site, we also mutated Trp residues at positions 17 and 402, as representative residues of the HPL N- and C-terminal domains, respectively. Taken together, our data suggested that the solvent-exposed Trp30 residue contributed to at least 44% of the overall fluorescence of wild-type HPL. Moreover, we found that the long-lived fluorescence lifetime (6.77 ns) of wild-type HPL could be specifically attributed to Trp30, a feature that enables selective monitoring of its environmental changes. Additionally, Trp residues at positions 17 and 402 strongly contributed to the 1.61 ns lifetime of HPL, while Trp residues at positions 86 and 252 contributed to the 0.29 ns lifetime.  相似文献   

12.
W Teschner  M C Serre  J R Garel 《Biochimie》1990,72(6-7):403-406
The leucine residue at position 178 in the major allosteric phosphofructokinase from Escherichia coli has been replaced by a tryptophan using site-directed mutagenesis. Transformation by the mutated gene of pfk- bacteria results into the expression of a pfk+ phenotype and the production of an active enzyme. The modified protein has been purified and its fluorescence properties show that it contains 2 tryptophan residues, the original Trp 311 and the new Trp 178. During unfolding of the protein by guanidine hydrochloride, the changes in the fluorescence of these 2 residues take place at different steps: Trp 311 becomes exposed to solvent when the dimeric form dissociates into monomers, while Trp 178 is exposed only when a folded chain loses its tertiary structure. The mutant enzyme is stabilized by its substrate fructose-6-phosphate against denaturation induced by heat or guanidine hydrochloride.  相似文献   

13.
Patterson-Ward J  Huang J  Lee I 《Biochemistry》2007,46(47):13593-13605
Lon is an ATP dependent serine protease responsible for degrading denatured, oxidatively damaged and certain regulatory proteins in the cell. In this study we exploited the fluorescence properties of a dansylated peptide substrate (S4) and the intrinsic Trp residues in Lon to monitor peptide interacting with the enzyme. We generated two proteolytically inactive Lon mutants, S679A and S679W, where the active site serine is mutated to an Ala and Trp residue, respectively. Stopped-flow fluorescence spectroscopy was used to identify key enzyme intermediates generated along the reaction pathway prior to peptide hydrolysis. A two-step peptide binding event is detected in both mutants, where a conformational change occurs after a rapid equilibrium peptide binding step. The Kd for the initial peptide binding step determined by kinetic and equilibrium binding techniques is approximately 164 micromolar and 38 micromolar, respectively. The rate constants for the conformational change detected in the S679A and S679W Lon mutants are 0.74 +/- 0.10 s(-1) and 0.57 +/- 0.10 s(-1), respectively. These values are comparable to the lag rate constant determined for peptide hydrolysis (klag approximately 1 s(-1)) [Vineyard, D., et al. (2005) Biochemistry 45, 4602-4610]. Replacement of the active site Ser with Trp (S679W) allows for the detection of an ATP-dependent conformational change within the proteolytic site. The rate constant for this conformational change is 7.6 +/- 1.0 s(-1), and is essentially identical to the burst rate constant determined for ATP hydrolysis under comparable reaction conditions. Collectively, these kinetic data support a mechanism by which the binding of ATP to an allosteric site on Lon activates the proteolytic site. In this model, the energy derived from the binding of ATP minimally supports peptide cleavage by allowing peptide substrate access to the proteolytic site. However, the kinetics of peptide cleavage are enhanced by the hydrolysis of ATP.  相似文献   

14.
A cDNA encoding mature porcine heart aconitase was over-expressed in Escherichia coli under the control of a phage T7 promoter. Recombinant aconitase purified from E. coli was identical to the enzyme from pig and beef heart in size, [3Fe-4S] and [4Fe-4S] cluster structure and enzymatic activity. Nine amino acid residues in close proximity to the Fe-S cluster and bound substrate (Lauble, H., Kennedy, M.C., Beinert, H., and Stout, C.D. (1992) Biochemistry, in press) were replaced by site-directed mutagenesis. Fe-S cluster environment as indicated by the EPR spectrum, tight binding of substrate, and enzymatic activity were compared for the mutant and wild type enzymes. Significant perturbations were detected for all of the mutant enzymes. Replacements for Asp100, His101, Asp165, Arg580, and Ser642 result in a 10(3)-10(5)-fold drop in activity, which suggests that these residues are involved in critical aspects of the reaction. Arg580 appears to be a key residue for substrate binding, as shown by a 30-fold increased Km and loss of tight substrate binding. Results of mutagenesis support the interpretation of the x-ray model, namely that Asp100 and His101 form an ion pair for elimination of the substrate hydroxyl and Ser642 may function as a general base for proton abstraction from citrate or isocitrate in the dehydration step and protonation of cis-aconitate in the hydration step. Asp165 appears to play a critical role in the interaction of Fea with substrate.  相似文献   

15.
Endopeptidase EC 3.4.24.15 (EP24.15) is a zinc metalloendopeptidase that is broadly distributed within the brain, pituitary, and gonads. Its substrate specificity includes a number of physiologically important neuropeptides such as neurotensin, bradykinin, and gonadotropin-releasing hormone, the principal regulatory peptide for reproduction. In studying the structure and function of EP24.15, we have employed in vitro mutagenesis and subsequent protein expression to genetically dissect the enzyme and allow us to glean insight into the mechanism of substrate binding and catalysis. Comparison of the sequence of EP24.15 with bacterial homologues previously solved by x-ray crystallography and used as models for mammalian metalloendopeptidases, indicates conserved residues. The active site of EP24.15 exhibits an HEXXH motif, a common feature of zinc metalloenzymes. Mutations have confirmed the importance, for binding and catalysis, of the residues (His473, Glu474, and His477) within this motif. A third putative metal ligand, presumed to coordinate directly to the active site zinc ion in concert with His473 and His477, has been identified as Glu502. Conservative alterations to these residues drastically reduces enzymatic activity against both a putative physiological substrate and a synthetic quenched fluorescent substrate as well as binding of the specific active site-directed inhibitor, N-[1-(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, the binding of which we have shown to be dependent upon the presence, and possibly coordination, of the active site zinc ion. These studies contribute to a more complete understanding of the catalytic mechanism of EP24.15 and will aid in rational design of inhibitors and pharmacological agents for this class of enzymes.  相似文献   

16.
The pyridoxal 5′-phosphate (PLP)-dependent enzyme O-acetylserine sulfhydrylase (OASS) catalyzes the synthesis of cysteine in bacteria and plants. In bacteria two isoenzymes are present, OASS-A and OASS-B, with distinct structural, functional, and regulatory properties. In order to gain a deeper insight into OASS-B dynamic and functional properties, single and double mutants of the three tryptophan residues, Trp28, Trp159, and Trp212, were prepared and their fluorescence emission properties were characterized in the absence and presence of substrate and ligands by steady-state and time-resolved spectrofluorimetry. Residue Trp28 was found to be mainly responsible for Trp fluorescence emission, whereas Trp212, located in a highly flexible region near the active site, is mainly responsible for an energy-transfer to PLP leading to an emission at 500 nm. Not surprisingly, mutation of Trp212 affects OASS-B activity. Trp159 slightly contributes to both direct emission and energy transfer to PLP. Time-resolved fluorescence measurements confirmed these findings, observing a third longer tryptophan lifetime for apo-OASS-B, in addition to the two lifetimes that are present in the holo-enzyme and mutants. A comparison with the emissions previously determined for OASS-A indicates that OASS-B active site is likely to be more polar and flexible, in agreement with a broader substrate specificity and higher catalytic efficiency.  相似文献   

17.
The conformation and dynamics of the ATP binding site of cytidine monophosphate kinase from Escherichia coli (CMPK(coli)), which catalyzes specifically the phosphate exchange between ATP and CMP, was studied using the fluorescence properties of 3'-anthraniloyl-2'-deoxy-ADP, a specific ligand of the enzyme. The spectroscopic properties of the bound fluorescent nucleotide change strongly with respect to those in aqueous solution. These changes (red shift of the absorption and excitation spectra, large increase of the excited state lifetime) are compared to those observed in different solvents. These data, as well as acrylamide quenching experiments, suggest that the anthraniloyl moiety is protected from the aqueous solvent upon binding to the ATP binding site, irrespective of the presence of CMP or CDP. The protein-bound ADP analogue exhibits a restricted fast subnanosecond rotational motion, completely blocked by CMP binding. The energy-minimized models of CMPK(coli) complexed with 3'-anthraniloyl-2'-deoxy-ADP using the crystal structures of the ligand-free protein and of its complex with CDP (PDB codes and, respectively) were compared to the crystal structure of UMP/CMP kinase from Dictyostelium discoideum complexed with substrates (PDB code ). The key residues for ATP/ADP binding to CMPK(coli) were identified as R157 and I209, their side chains sandwiching the adenine ring. Moreover, the residues involved in the fixation of the phosphate groups are conserved in both proteins. In the model, the accessibility of the fluorescent ring to the solvent should be substantial if the LID conformation remained unchanged, by contrast to the fluorescence data. These results provide the first experimental arguments about an ATP-mediated induced-fit of the LID in CMPK(coli) modulated by CMP, leading to a closed conformation of the active site, protected from water.  相似文献   

18.
Mani RS  Usova EV  Cass CE  Eriksson S 《Biochemistry》2006,45(11):3534-3541
Human deoxycytidine kinase (dCK) phosphorylates both pyrimidine and purine deoxynucleosides, including numerous nucleoside analogue prodrugs. Energy transfer studies of transfer between Trp residues of dCK and the fluorescent probe N-(1-pyrene)maleimide (PM), which specifically labels Cys residues in proteins, were performed. Two of the six Cys residues in dCK were labeled, yielding a protein that was functionally active. We determined the average distances between PM-labeled Cys residues and Trp residues in dCK in the absence and presence of various pyrimidine and purine nucleoside analogues with the Trp residues as energy donors and PM-labeled Cys residues as acceptors. The transfer efficiency was determined from donor intensity quenching and the F?rster distance R(0) at which the efficiency of energy transfer is 50%, which was 19.90 A for dCK-PM. The average distance R between the Trp residues and the labeled Cys residues in dCK-PM was 18.50 A, and once substrates bound, this distance was reduced, demonstrating conformational changes. Several of the Cys residues of dCK were mutated to Ala, and the properties of the purified mutant proteins were studied. PM labeled a single Cys residue in Cys-185-Ala dCK, suggesting that one of the two Cys residues labeled in wild-type dCK was Cys 185. The distance between the single PM-labeled Cys residue and the Trp residues in Cys-185-Ala dCK was 20.75 A. Binding of nucleosides had no effect on the pyrene fluorescence of Cys-185-Ala dCK, indicating that the conformational changes observed upon substrate binding to wild-type dCK-PM involved the "lid region" of which Cys 185 is a part. The substrate specificity of Cys-185-Ala dCK was altered in that dAdo and UTP were better substrates for the mutant than for the wild-type enzyme.  相似文献   

19.
The symmetrical dimer structure of tryptophanyl-tRNA synthetase is similar to that of tyrosyl-tRNA synthetase whose binding behavior and structural details have been elucidated in detail. The structure of both subunits after forming the intermediate tryptophanyl-AMP has important implications for the binding of the cognate tRNA(Trp). Single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase have been constructed and expressed and used to probe structural changes in different domains of the enzyme in both subunits. Substrate titrations using the Trp analogues 4-fluorotryptophan and 7-azatryptophan in the presence of ATP to form the corresponding aminoacyl-adenylate reveal significant structural changes occurring throughout the active subunit in regions not confined to the active site. Changes in environment around the specific Trp residues were monitored using UV absorbance and steady-state fluorescence measurements. When titrated with 4-fluorotryptophan, both Trp 91 and Trp 290 fluorescence is quenched (49 and 22%, respectively) when one subunit has formed Trp-AMP. The fluorescence of Trp 48 is enhanced 19%. No further change in signal was observed after a 1:1 dimer/L-4FW-AMP complex ratio had been established. Using an anion-exchange filter binding assay with radiolabeled l-Trp as a substrate, binding to only one subunit was observed under nonsaturating conditions. This agrees with the results of the assay using 7-azatryptophan as a substrate. The observed changes extend to the unfilled subunit where a similar structure is believed to form after one subunit has formed tryptophan-AMP. Movement in the regions of the enzyme containing Trp 290 and Trp 91 suggests a mechanism for cross-subunit communication involving the helical backbone and dimer interface containing these two residues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号