首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and characterization of smooth muscle cell caveolae   总被引:45,自引:14,他引:31       下载免费PDF全文
Plasmalemmal caveolae are a membrane specialization that mediates transcytosis across endothelial cells and the uptake of small molecules and ions by both epithelial and connective tissue cells. Recent findings suggest that caveolae may, in addition, be involved in signal transduction. To better understand the molecular composition of this membrane specialization, we have developed a biochemical method for purifying caveolae from chicken smooth muscle cells. Biochemical and morphological markers indicate that we can obtain approximately 1.5 mg of protein in the caveolae fraction from approximately 100 g of chicken gizzard. Gel electrophoresis shows that there are more than 30 proteins enriched in caveolae relative to the plasma membrane. Among these proteins are: caveolin, a structural molecule of the caveolae coat; multiple, glycosylphosphatidylinositol-anchored membrane proteins; both G alpha and G beta subunits of heterotrimeric GTP-binding protein; and the Ras-related GTP-binding protein, Rap1A/B. The method we have developed will facilitate future studies on the structure and function of caveolae.  相似文献   

2.
During CNS development neurons undergo directional migration to achieve their adult localizations. To study neuronal migration, we used a model cell line of immortalized murine neurons (gonadotropin-releasing hormone expressing neurons; GN11), enriched with caveolins and caveolae invaginations that show in vitro chemotaxis upon serum exposure. Cholesterol depletion with methyl-β-cyclodextrin induced the loss of caveolae and the inhibition of chemotaxis, thus suggesting that GN11 migration depends upon the structural integrity of caveolae. Polarization of proteins and organelles is a hallmark of cell migration. Accordingly, GN11 cells transmigrating through filter pores exhibited a polarized distribution of caveolin-1 isoform (cav-1) in the leading processes. In contrast, during two-dimensional migration cav-1 and caveolae polarized at the trailing edge. As caveolae are enriched with signaling molecules, we suggest that asymmetrical localization of caveolae may spatially orient GN11 neurons to incoming migratory signals thereby transducing them into directional migration.  相似文献   

3.
Caveolins are a family of proteins that coat the cytoplasmic face of caveolae, vesicular invaginations of the plasma membrane. These proteins are central to the organization of the proteins and lipids that reside in caveolae. Caveolins transport cholestrol to and from caveolae, and they regulate the activity of signaling proteins that reside in caveolae. Studying the genes encoding the caveolae coat proteins, we have learned much about how they perform these multiple functions.  相似文献   

4.
Participation of caveolae in beta1 integrin-mediated mechanotransduction   总被引:3,自引:0,他引:3  
We previously reported that caveolin-1 is a key component in a beta1 integrin-dependent mechanotransduction pathway suggesting that caveolae organelles and integrins are functionally linked in their mechanotransduction properties. Here, we exposed BAEC monolayers to shear stress then isolated caveolae vesicles form the plasma membrane. While little beta1 integrin was detected in caveolae derived from cells kept in static culture, shear stress induced beta1 integrin transposition to the caveolae. To evaluate the significance of shear-induced beta1 integrin localization to caveolae, cells were pretreated with cholesterol sequestering compounds or caveolin-1 siRNA to disrupt caveolae structural domains. Cholesterol depletion attenuated integrin-dependent caveolin-1 phosphorylation, Src activation and Csk association with beta1 integrin. Reduction of both caveolin-1 protein and membrane cholesterol inhibited downstream shear-induced, integrin-dependent phosphorylation of myosin light chain. Taken together with our previous findings, the data supports the concept that beta1 integrin-mediated mechanotransduction is mediated by caveolae domains.  相似文献   

5.
Caveolins are a family of proteins that coat the cytoplasmic face of caveolae, vesicular invaginations of the plasma membrane. These proteins are central to the organization of the proteins and lipids that reside in caveolae. Caveolins transport cholesterol to and from caveolae, and they regulate the activity of signaling proteins that reside in caveolae. Through studying the genes encoding the caveolae coat proteins, we have learned much about how they perform these multiple functions.  相似文献   

6.
Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity.  相似文献   

7.
Adipocytes play an important role in the insulin-dependent regulation of organismal fuel metabolism and express caveolae at levels as high or higher than any other cell type. Recently, a link between insulin signaling and caveolae has been suggested; nevertheless, adipocyte caveolae have been the subject of relatively few studies, and their contents have been minimally characterized. With the aid of a new monoclonal antibody, we developed a rapid procedure for the immunoisolation of caveolae derived from the plasma membrane of adipocytes, and we characterized their protein content. We find that immunopurified adipocyte caveolae have a relatively limited protein composition, and they lack the raft protein, flotillin, and insulin receptors. Immunogold labeling and electron microscopy of the adipocyte plasma membrane confirmed the lack of insulin receptors in caveolae. In addition to caveolins, the structural components of caveolae, their major protein constituents, are the semicarbazide-sensitive amine oxidase and the scavenger lipoprotein receptor CD36. The results are consistent with a role for caveolae in lipid flux in and of adipocytes.  相似文献   

8.
Eps15 homology domain-containing 2 (EHD2) belongs to the EHD-containing protein family of dynamin-related ATPases involved in membrane remodeling in the endosomal system. EHD2 dimers oligomerize into rings on highly curved membranes, resulting in stimulation of the intrinsic ATPase activity. In this paper, we report that EHD2 is specifically and stably associated with caveolae at the plasma membrane and not involved in clathrin-mediated endocytosis or endosomal recycling, as previously suggested. EHD2 interacts with pacsin2 and cavin1, and ordered membrane assembly of EHD2 is dependent on cavin1 and caveolar integrity. While the EHD of EHD2 is dispensable for targeting, we identified a loop in the nucleotide-binding domain that, together with ATP binding, is required for caveolar localization. EHD2 was not essential for the formation or shaping of caveolae, but high levels of EHD2 caused distortion and loss of endogenous caveolae. Assembly of EHD2 stabilized and constrained caveolae to the plasma membrane to control turnover, and depletion of EHD2, resulting in endocytic and more dynamic and short-lived caveolae. Thus, following the identification of caveolin and cavins, EHD2 constitutes a third structural component of caveolae involved in controlling the stability and turnover of this organelle.  相似文献   

9.
The uptake of cholesterol esters from high density lipoproteins (HDLs) is characterized by the initial movement of cholesterol esters into a reversible plasma membrane pool. Cholesterol esters are subsequently internalized to a nonreversible pool. Unlike the uptake of cholesterol from low density lipoproteins, cholesterol ester uptake from HDL does not involve the internalization and degradation of the particle and is therefore termed selective. The class B, type I scavenger receptor (SR-BI) has been identified as an HDL receptor and shown to mediate selective cholesterol ester uptake. SR-BI is localized to cholesterol- and sphingomyelin-rich microdomains called caveolae. Caveolae are directly involved in cholesterol trafficking. Therefore, we tested the hypothesis that caveolae are acceptors for HDL-derived cholesterol ether (CE). Our studies demonstrate that in Chinese hamster ovary cells expressing SR-BI, >80% of the plasma membrane associated CE is present in caveolae after 7.5 min of selective cholesterol ether uptake. We also show that excess, unlabeled HDL can extract the radiolabeled CE from caveolae, demonstrating that caveolae constitute a reversible plasma membrane pool of CE. Furthermore, 50% of the caveolae-associated CE can be chased into a nonreversible pool. We conclude that caveolae are acceptors for HDL-derived cholesterol ethers, and that caveolae constitute a reversible, plasma membrane pool of cholesterol ethers.  相似文献   

10.
Sens P  Turner MS 《Biophysical journal》2004,86(4):2049-2057
We study a physical model for the formation of bud-like invaginations on fluid lipid membranes under tension, and apply this model to caveolae formation. We demonstrate that budding can be driven by membrane-bound proteins, provided that they exert asymmetric forces on the membrane that give rise to bending moments. In particular, caveolae formation does not necessarily require forces to be applied by the cytoskeleton. Our theoretical model is able to explain several features observed experimentally in caveolae, where proteins in the caveolin family are known to play a crucial role in the formation of caveolae buds. These include 1), the formation of caveolae buds with sizes in the 100-nm range and 2), that certain N- and C-termini deletion mutants result in vesicles that are an order-of-magnitude larger. Finally, we discuss the possible origin of the morphological striations that are observed on the surfaces of the caveolae.  相似文献   

11.
Caveolae, a class of cholesterol-rich lipid rafts, are smooth invaginations of the plasma membrane whose formation in nonmuscle cells requires caveolin-1 (Cav1). The recent demonstration that Cav1-associated cavin proteins, in particular PTRF/cavin-1, are also required for caveolae formation supports a functional role for Cav1 independently of caveolae. In tumor cells deficient for Golgi β-1,6N-acetylglucosaminyltransferase V (Mgat5), reduced Cav1 expression is associated not with caveolae but with oligomerized Cav1 domains, or scaffolds, that functionally regulate receptor signaling and raft-dependent endocytosis. Using subdiffraction-limit microscopy, we show that Cav1 scaffolds are homogenous subdiffraction-limit sized structures whose size distribution differs from that of Cav1 in caveolae expressing cells. These cell lines displaying differing Cav1/caveolae phenotypes are effective tools for probing the structure and composition of caveolae. Using stable isotope labeling by amino acids in cell culture, we are able to quantitatively distinguish the composition of caveolae from the background of detergent-resistant membrane proteins and show that the presence of caveolae enriches the protein composition of detergent-resistant membrane, including the recruitment of multiple heterotrimeric G-protein subunits. These data were further supported by analysis of immuno-isolated Cav1 domains and of methyl-β-cyclodextrin-disrupted detergent-resistant membrane. Our data show that loss of caveolae results in a dramatic change to the membrane raft proteome and that this change is independent of Cav1 expression. The proteomics data, in combination with subdiffraction-limit microscopy, indicates that noncaveolar Cav1 domains, or scaffolds are structurally and functionally distinct from caveolae and differentially impact on the molecular composition of lipid rafts.  相似文献   

12.
Biochemical and cell fractionation studies suggest caveolae contain functionally organized sets of signaling molecules that are capable of transmitting specific signals to the cell. It is not known, however, whether any signals actually originate from caveolae in living cells. To address this question, we have engineered the calcium sensor yellow cameleon so that it is targeted either to the plasma membrane, caveolae, or the cytoplasm of endothelial cells. Quantitative measurements of the three Ca2+ pools detected by these probes indicate that caveolae are preferred sites of Ca2+ entry when Ca2+ stores in the endoplasmic reticulum are depleted. These results suggest that the signaling machinery in control of Ca2+ entry is functionally organized in the caveolae of living cells.  相似文献   

13.
Even though the modulation of EGF receptors by PDGF is well documented, it is not known where on the cell surface cross-talk between the two receptor systems takes place. The recent finding that both populations of receptors are concentrated in cell surface caveolae suggestes that the confinement of the two receptors to this space might facilitate their interaction. Here we show that stimulation of PDGF receptors in caveolae with PDGF causes a subpopulation of EGF receptors in the same membrane fraction to become phosphorylated on tyrosine. Coincident with tyrosine phosphorylation, the binding of EGF to its receptor markedly declines. Loss of EGF binding is partially blocked by tyrosine kinase inhibitors. Despite the close proximity of the two receptors in caveolae, we saw no evidence that EGF could stimulated PDGFR tyrosine phosphorylation. These results suggest that these two receptor systems are highly organized in caveolae.  相似文献   

14.
In this paper, we study the effects on G-protein activation of a non-uniform distribution of signalling components. The spatial heterogeneity is attributed to caveolae, a specific membrane microdomain which has been observed to redistribute and concentrate signalling molecules. Diffusive coagulation-fragmentation equations are used to describe the aggregation of caveolin homo-oligomers and the subsequent formation of caveolae. A system of reaction-diffusion equation is thus formulated and, in order to describe the restrictions imposed by caveolae on the movement of receptors and G-protein, a segregation coefficient is introduced which serves to regulate the preference of the species to segregate according to the concentration of caveolae. The results demonstrate that the heterogeneous distribution of the signalling components and the efficiency of G-protein activation can vary significantly, depending on the concentration of caveolae.  相似文献   

15.
Caveolae are flask-shaped endocytic structures composed primarily of caveolin-1 (Cav1) and caveolin-2 (Cav2) proteins. Interestingly, a cytoplasmic accumulation of Cav1 protein does not always result in a large number of assembled caveolae organelles, suggesting a regulatory mechanism that controls caveolae assembly. In this study we report that stimulation of epithelial cells with epithelial growth factor (EGF) results in a profound increase in the number of caveolar structures at the plasma membrane. Human pancreatic tumor cells (PANC-1) and normal rat kidney cells (NRK), as a control, were treated with 30 ng/ml EGF for 0, 5, and 20 min before fixation and viewing by electron microscopy. Cells fixed without EGF treatment exhibited modest numbers of plasma membrane-associated caveolae. Cells treated with EGF for 5 or 20 min showed an 8-10-fold increase in caveolar structures, some forming long, pronounced caveolar "towers" at the cell-cell borders. It is known that Cav1 is Src-phosphorylated on tyrosine 14 in response to EGF treatment, although the significance of this modification is unknown. We postulated that phosphorylation could provide the stimulus for caveolae assembly. To this end, we transfected cells with mutant forms of Cav1 that could not be phosphorylated (Cav1Y14F) and tested if this altered protein reduced the number of EGF-induced caveolae. We observed that EGF-stimulated PANC-1 cells expressing the mutant Cav1Y14F protein exhibited a 90-95% reduction in caveolae number compared with cells expressing wild type Cav1. This study provides novel insights into how cells regulate caveolae formation and implicates EGF-based signaling cascades in the phosphorylation of Cav1 as a stimulus for caveolae assembly.  相似文献   

16.
Caveolae are hot spots in IGF-I signalling as suggested by the facts that IGF-I receptors localize in caveolae, directly interact with and tyrosine phosphorylate caveolin 1, the major caveolar protein. Also a number of IGF-IR substrates reside in caveolae, supporting a role of these organelles in the regulation of IGF-I action. Recently, we have demonstrated that IGF-I could specifically regulate Shc phosphorylation in caveolae. Here we show that also IRS1 localizes in this region where it is tyrosine phosphorylated in the presence of IGF-I. Moreover, IRS1 co-immunoprecipitates with caveolin 1 and the specific phosphocaveolin 1-IRS1 interaction is increased by IGF-I.  相似文献   

17.
Cellular spelunking: exploring adipocyte caveolae   总被引:1,自引:0,他引:1  
It has been known for decades that the adipocyte cell surface is particularly rich in small invaginations we now know to be caveolae. These structures are common to many cell types but are not ubiquitous. They have generated considerable curiosity, as manifested by the numerous publications on the topic that describe various, sometimes contradictory, caveolae functions. Here, we review the field from an "adipocentric" point of view and suggest that caveolae may have a function of particular use for the fat cell, namely the modulation of fatty acid flux across the plasma membrane. Other functions for adipocyte caveolae that have been postulated include participation in signal transduction and membrane trafficking pathways, and it will require further experimental scrutiny to resolve controversies surrounding these possible activities.  相似文献   

18.
The phosphatidylinositol (PI) signaling pathway mediates norepinephrine (NE)- and endothelin-1 (ET-1)-stimulated vascular smooth muscle contraction through an inositol-trisphosphate-induced rise in intracellular calcium and diacylglycerol (DG) activation of protein kinase C (PKC). Subsequent activation of DG kinases (DGKs) metabolizes DG to phosphatidic acid (PA), potentially regulating PKC activity. Because precise regulation and spatial restriction of the PI pathway is necessary for specificity, we have investigated whether this occurs within caveolae/rafts, specialized plasma membrane microdomains implicated in vascular smooth muscle contraction. We show that components of the PI signaling cascade-phosphatidylinositol 4,5-bisphosphate (PIP(2)), PA, and DGK-theta are present in caveolae/rafts prepared from rat mesenteric small arteries. Stimulation with NE or ET-1 induced [(33)P]PIP(2) hydrolysis solely within caveolae/rafts. NE stimulated an increase in DGK activity in caveolae/rafts alone, whereas ET-1 activated DGK in caveolae/rafts and noncaveolae/rafts; however, [(33)P]PA increased in all fractions with both agonists. Previously, we reported that NE activated DGK-theta in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner; here, we describe PI3-kinase-dependent DGK activation and [(33)P]PA production in caveolae/rafts in response to NE but not ET-1. Additionally, PKB, a potential activator of DGK-theta, translocated to caveolae/rafts in response to NE but not ET-1, and PI3-kinase inhibition prevented this. Furthermore, PI3-kinase inhibition reduced the sensitivity of contraction to NE but not ET-1. Our study shows that caveolae/rafts are major sites of vasoconstrictor hormone activation of the PI pathway in intact small arteries and suggest a link between lipid signaling events within caveolae/rafts and contraction.  相似文献   

19.
Caveolae are specialised RAFTs (detergent-resistant membrane microdomains enriched in cholesterol and glycosphingolipids). Caveolin, the main caveolae protein, is essential to the organisation of proteins and lipids, and interacts with numerous mediating proteins through a 'Caveolin Scalfolding Domain'. Consequently, caveolae play a major role in signal transduction and appear to be veritable signalling platforms. In muscle cells, caveolae are essential for fusion and differentiation, and are also implicated in a type of muscular dystrophy (LGMD1C). In a preceding work, we demonstrated the presence of active milli-calpain (m-calpain) in myotube caveolae. Calpains are calcium-dependent proteases involved in several cellular processes, including myoblast fusion and migration, PKC-mediated intracellular signalling and remodelling of the cytoskeleton. For the first time, we have proved the cholesterol-dependent localisation of m-calpain in the caveolae of C(2)C(12) myotubes. Calpain-dependent caveolae involvement in myoblast fusion was also strongly suggested. Furthermore, eight differentially expressed caveolae associated proteins were identified by 2-DE and LC-MS/MS analyses using an m-calpain antisense strategy. This proteomic study also demonstrates the action of m-calpain on vimentin, desmin and vinculin in myotube caveolae and suggests m-calpain's role in several mitochondrial pathways.  相似文献   

20.
Defining the molecular composition of caveolae is essential in establishing their molecular architecture and functions. Here, we identify a high affinity monoclonal antibody that is specific for caveolin-1alpha and rapidly binds caveolin oligomerized around intact caveolae. We use this antibody (i) to develop a new simplified method for rapidly isolating caveolae from cell and tissue homogenates without using the silica-coating technology and (ii) to analyze various caveolae isolation techniques to understand how they work and why they yield different compositions. Caveolae are immunoisolated from rat lung plasma membrane fractions subjected to mechanical disruption. Sonication of plasma membranes, isolated with or without silica coating, releases caveolae along with other similarly buoyant microdomains and, therefore, requires immunoisolations to purify caveolae. Shearing of silica-coated plasma membranes provides a homogeneous population of caveolae whose constituents (i) remain unchanged after immunoisolation, (ii) all fractionate bound to the immunobeads, and (iii) appear equivalent to caveolae immunoisolated after sonication. The caveolae immunoisolated from different low density fractions are quite similar in molecular composition. They contain a subset of key signaling molecules (i.e. G protein and endothelial nitric oxide synthase) and are markedly depleted in glycosylphosphatidylinositol-anchored proteins, beta-actin, and angiotensin-converting enzyme. All caveolae isolated from the cell surface of lung microvascular endothelium in vivo appear to be coated with caveolin-1alpha. Caveolin-1beta and -2 can also exist in these same caveolae. The isolation and analytical procedures as well as the time-dependent dissociation of signaling molecules from caveolae contribute to key compositional differences reported in the literature for caveolae. This new, rapid, magnetic immunoisolation procedure provides a consistent preparation for use in the molecular analysis of caveolae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号