首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine adrenocortical microsomes were prepared and partially purified by discontinuous sucrose density gradient. Light fractions of the microsomes at the interface between 15 and 30% sucrose solution, exhibited ATP dependent Ca2+ uptake. The Ca2+ uptake was dependent on temperature and stimulated by free Ca2+ (the concentration for half maximal activation = 1.0 microM) and Mg2+. The Ca2+ uptake was inhibited by ADP but not affected by 10 mM NaN3 or 0.5 mM ouabain. Calcium release from the microsomes was accelerated by a Ca2+ ionophore, A23187, but not by a Ca2+ antagonist, diltiazem. A microsomal protein with a molecular weight of 100-110 kDa was phosphorylated by [gamma-32P]ATP in the presence of Ca2+, and the Ca2+ dependency was over the same range as the Ca2+ uptake (the concentration for half maximal activation = 3.0 microM). The phosphorylated protein (EP) was stable at acidic pH but labile at alkaline pH and sensitive to hydroxylamine. The rate of EP formation at 0 degrees C in the presence of 1 microM ATP and 10 microM Ca2+ (half time = 0.2 s) was less than that in the sarcoplasmic reticulum (SR) of rabbit skeletal muscle (half time = 0.1 s). The rate of EP decomposition at 0 degrees C after adding EGTA was about 6.7 times slower (rate constant: kd = 4.3 X 10(-3) s-1) than that of SR. It was suggested that adrenocortical microsomes contain a Ca2+ dependent ATPase which function as a Ca2+ pump with similar properties to that of SR.  相似文献   

2.
We have studied lipid lateral phase separation (LPS) in the intact sarcoplasmic reticulum (SR) membrane and in bilayers of isolated SR membrane lipids as a function of temperature, [Mg+2], and degree of hydration. Lipid LPS was observed in both the intact membrane and in the bilayers of isolated SR lipids, and the LPS behavior of both systems was found to be qualitatively similar. Namely, lipid LPS occurs only at relatively low temperature and water content, independently of the [Mg+2], and the upper characteristic temperature (th) for lipid LPS for both the membrane and bilayers of its isolated lipids coincide to within a few degrees. However, at similar temperatures, isolated lipids show more LPS than the lipids in the intact membrane. Lipid LPS in the intact membrane and in bilayers of the isolated lipids is fully reversible, and more extensive for samples partially dehydrated at temperatures below th. Our previous x-ray diffraction studies established the existence of a temperature-induced transition in the profile structure of the sarcoplasmic reticulum Ca+2ATPase which occurs at a temperature corresponding to the [Mg+2]-dependent upper characteristic temperature for lipid LPS in the SR membrane. Furthermore, the functionality of the ATPase, and in particular the lifetime of the first phosphorylated enzyme conformation (E1 approximately P) in the Ca+2 transport cycle, were also found to be linked to the occurrence of this structural transition. The hysterisis observed in lipid LPS behavior as a function of temperature and water content provides a possible explanation for the more efficient transient trapping of the enzyme in the E1 approximately P conformation observed in SR membranes partially dehydrated at temperatures below th. The observation that LPS behavior for the intact SR membrane and bilayers of isolated SR lipids (no protein present) are qualitatively similar strongly suggests that the LPS behavior of the SR membrane lipids is responsible for the observed structural change in the Ca+2ATPase and the resulting significant increase in E1 approximately P lifetime for temperatures below th.  相似文献   

3.
Solubilized Ca2+-ATPase (SSR) was prepared by solubilizing fragmented sarcoplasmic reticulum (FSR) with a nonionic detergent (C12E8) then displacing the detergent with Tween 80, using a DEAE-cellulose column. The kinetic properties of the phosphorylated intermediate (EP) formed by the reaction of SSR with ATP were compared with those of EP formed by the reaction with Pi. The time course of decay of E32P formed with 4 microM AT32P in the presence of 19 mM CaCl2 and 10 mM MgCl2 (forward reaction) was measured by adding 0.4 mM unlabeled ATP and 10 mM Pi at pH 6.0 and 30 degrees C. The rate of E32P decay was accelerated by 0.4 mM ADP. On the other hand, when the time course of decay of E32P formed with 10 mM 32Pi in the presence of 5 mM EGTA and 10 mM MgCl2 (backward reaction) was measured by adding 0.4 mM unlabeled ATP and 15 mM CaCl2, the rate of E32P decay was unaffected by 0.4 mM ADP. AT32P was produced on adding ADP to E32P formed with AT32P in the presence of 10 mM CaCl2 and 10 mM MgCl2, while no AT32P was produced on adding ADP to E32P formed with 32Pi in the presence of 5 mM EGTA and 10 mM MgCl2, even when 15 mM CaCl2 was added simultaneously with ADP.  相似文献   

4.
The Ca2(+)-dependent adenosinetriphosphatase (Ca2(+)-ATPase) from the sarcoplasmic reticulum (SR) of rat skeletal muscles is phosphorylated by inorganic phosphate (Pi) in the absence of Ca2+. The reaction can be described by the following simplified scheme: [formula: see text] where E-P is a covalent, acid-stable and ADP-insensitive phosphoenzyme, and E.Pi is a noncovalent and acid-labile complex. The reaction is Mg2(+)-dependent. Membrane fragments deposited on Millipore filters were successively perfused with two solutions, at constant flow. The effluent samples were analyzed. The perfused solutions were Ca2+ free and always contained 40% dimethylsulfoxide (DMSO), plus other reactants. Following the successive perfusion of solutions without and with [32P]Pi, 32P binding is only detected in the presence of Mg2+, indicating the formation of the phosphoenzymes (E.Pi and E-P). Following perfusions of the phosphoenzymes with 5% trichloroacetic acid, 32P release indicates the amount of the acid-labile moiety (E.Pi). After phosphorylations, the filters were washed with acid and unlabeled Pi, and the remaining radioactivity was measured to evaluate the acid-stable phosphoenzyme (E-P). The acid-labile and acid-stable phosphoenzymes amounted, respectively, 0.72 +/- 0.12, and 1.48 +/- 0.10 nmol of Pi/mg of protein ( +/- S.E., n = 5), after phosphorylations with 20 microM Pi. The results indicate: (1) The method allowed the evaluation of the acid-labile intermediate of the SR Ca2(+)-ATPase cycle. Keq = k2/k-2), in the above scheme, approaches 2.0. (2) The substrate of the phosphorylation reaction, in the presence of DMSO, is likely to be the Mg.Pi complex, since Mg2+ is necessary for step 1 in the above scheme.  相似文献   

5.
Plasma-membrane vesicles from rat corpus luteum showed an ATP-dependent uptake of Ca2+. Ca2+ was accumulated with a K1/2 (concn. giving half-maximal activity) of 0.2 microM and was released by the bivalent-cation ionophore A23187. A Ca2+-dependent phosphorylated intermediate (Mr 100,000) was detected which showed a low decomposition rate, consistent with it being the phosphorylated intermediate of the transport ATPase responsible for Ca2+ uptake. The Ca2+ uptake and the phosphorylated intermediate (E approximately P) displayed several properties that were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes. Both Ca2+ uptake and E approximately P discriminated against ribonucleoside triphosphates other than ATP, whereas the ATPase split all the ribonucleoside triphosphates equally. Both Ca2+ uptake and E approximately P were sensitive to three different Hg-containing inhibitors, whereas the ATPase was inhibited much less. Ca2+ uptake required added Mg2+ (Km = 2.2 mM), whereas the ATPase required no added Mg2+. The maximum rate of Ca2+ uptake was about 400-fold less than that of ATP splitting; under different conditions, the decomposition rate of E approximately P was 1,000 times too slow to account for the ATPase activity observed. All of these features suggested that Ca2+ uptake was due to an enzyme of low activity, whose ATPase activity was not detected in the presence of the higher-specific-activity Ca2+-dependent ATPase.  相似文献   

6.
Previously, we proposed the following reaction machanism for the transport ATPase (EC 3.6.1.3) reaction in the presence of high concentrations of Mg2+ and Na+:(see article). Some kinetic and thermodynamic properties of steps 3 and 4 were investigated, and the following results were obtained. 1. When the reaction was started by adding ATP to the enzyme in the presence of 50 mM Na+ and 0.5 mM K+ or in the presence of 50mM Na+ and 0.5mM Rb+, the amount of E ADP P increased with time and maintained a constant level after reaching a maximum. We could not observe the initial burst of EP formation, which was observed by Post er al. in the presence of 8 mM Na+ and 0.01 mM Rb+. 2. The existence of quasi-equilibrium between E2ATP and E ADP P in the presence of low concentrations of Na+ was suggested by the fact that the values of the reciprocal of the equilibrium constant, K3 of step 3 obtained by the following three methods were almost the same. a) The value of 1+K3 was estimated from the ratio of vo/[EP] to kd, where vo is the rate of ATP hydrolysis in the steady state, [EP] the concentration of EP, and kd the first-order rate constant of EP disappearance after stopping EP formation. b) This value was also calculated from the ratio of the amount of P1 liberated to that of decrease in EP after stopping EP formation. c) The value of K3 was also calculated from the initial rapid decrease in EP on adding K+ and EDTA, assuming that the rapid decrease was due to a shift of the equilibrium toward E2ATP on adding K+. For example, the value of K3 with 10mM NaCL and 0.5mM KCL was 7--11. Although ATP formation due to a shift of the equilibrium toward E2ATP by a K+ jump in the presence of a low concentration of Na+ was observed at 0 degrees, the amount of ATP formed by a K+ jump at 15 degrees was less than the value expected from the shift of the equilibrium. 3. The values of delta H degrees and delta S degrees of step 3 were estimated in the presence of a sufficient amount of Na+ and in the absence of K+. They were +4--+5 kcal mole minus 1 and +15--+16 entropy units mole minus1, respectively. On the basis of kinetic studies of the elementary steps and the overall reaction of Na+-K+-dependent ATPase [EC 3.6.1.3], we (1--4) showed that a phosphorylated intermediate, EP, is formed via two kinds of enzyme-substrate complex, E1ATP and E2ATP, that the EP is in K+-dependent quasi-equilibrium with E2ATP, and that in the presence of high concentration of Mg2+, EP is in a high-energy state and contains bound ADP, E ADP P.(see article).  相似文献   

7.
The effects of D2O on the elementary steps in the contractile and transport ATPase [EC 3.6.1.3] reactions were studied, and the following results were obtained: 1. The rate of H-meromyosin ATPase in the steady state decreased in D2O to 60% of that in H2O. Deuterium oxide did not affect the size or rate of the initial burst of Pi liberation, i.e. the amount or rate of formation of the reactive myosin-phosphate-ADP complex, MADPP. Moreover, neither the rate of change in the fluorescence spectrum of H-meromyosin induced by ATP (the rate of formation of the second enzyme-ATP complex, M2ATP) nor the rate constant of decomposition of MADPP into M degrees + ADP + Pi was affected by D2O. However, the equilibrium constant of the step M2ATP in equilibrium MADPP decreased in D2O to about 1/2 the value in H2O. 2. In the case of the Na+-K+-dependent ATPase reactin, neither the rate constant of formation of the second enzyme-ATP complex, E2ATP, nor that of decomposition of a phosphorylated intermediate, EADP approximately P, was affected by D2O. However, the equilibrium constant of the step E2ATP in equilibrium EADP approximately P decreased in D2O to about 1/2.5-1/4 of the value in H2O. These results suggest a similarity between the modes of binding of phosphate in MADPP in the myosin ATPase reaction and in EADP approximatley P in the Na+-K+-dependent ATPase reaction.  相似文献   

8.
The interaction of Pi with sarcoplasmic reticulum (SR) isolated from rabbit skeletal muscle was studied using bromocresol purple (BCP) as a probe and a dual-wavelength spectrophotometer. Two kinds of absorption-intensity changes controlled by a low concentration of Ca2+ (greater than 10(-6)M) were observed after addition of Pi; an increase phase (in the presence of Ca2+), and a decrease phase (in the presence of EGTA). The increase phase was rapid, Ca2+-dependent, Mg2+-enhanced (depressed by high Mg2+ concentration) and not inhibited by PCMB and was suggested to reflect the formation of an SR-Pi complex. The decrease phase was slower than the increase phase, and was strongly inhibited by the low concentration of Ca2+. It required Mg2+, and was completely inhibited by p-chloromercuribenzoate or deoxycholate. It was suggested to reflect the formation of SR-Pi (phosphorylated protein). ATP inhibited this phase by converting it completely to an SR-MgATP phase. PPi was effective for inducing the decrease phase but PPPi was not. From measurements of these phases, the association constants of the SR-Pi complex and SR-Pi at pH 8.8 in the reaction scheme, SR + Pi in equilibrium SR-Pi in equilibrium SR-Pi, were calculated as 5.4 X 10 M-1 and 1.8 X 10(3) M-1, respectively. From the completely different responses of SR-Pi and SR-Pi observed with BCP a marked difference in the conformations of these enzyme states was suggested.  相似文献   

9.
Direct measurements of phosphorylation of the Ca2+ ATPase of the sarcoplasmic reticulum (SR) have shown that the lifetime of the first phosphorylated intermediate in the Ca2+ transport cycle, E1 approximately P, increases with decreasing [Mg2+] (Dupont, Y. 1980. Eur. J. Biochem. 109:231-238). Previous x-ray diffraction work (Pascolini, D., and J.K. Blasie. 1988. Biophys. J. 54:669-678) under high [Mg2+] conditions (25 mM) indicated that changes in the profile structure of the SR membrane could be responsible for the low-temperature transient trapping of E1 approximately P that occurs at temperatures below 2-3 degrees C, the upper characteristic temperature th for lipid lateral phase separation in the membrane. We now present results of our study of the Ca2+ uptake kinetics and of the structure of the SR membrane at low [Mg2+] (less than or equal to 100 microM). Our results show a slowing in the kinetics of both phases of the Ca2+ uptake process and an increase in the duration of the plateau of the fast phase before the onset of the slow phase, indicating an increase in the lifetime (transient trapping) of E1 approximately P. Calcium uptake kinetics at low [Mg2+] and moderately low temperature (approximately 0 degree C) are similar to those observed at much lower temperatures (approximately -10 degrees C) at high [Mg2+]. The temperature-induced structural changes that we observed at low [Mg2+] are much more pronounced than those found to occur at higher [Mg2+]. Also, at the lower [Mg2+] the upper characteristic temperature th for lipid lateral phase separation was found to be higher, at approximately 8-10 degrees C. Our studies indicate that both temperature and [Mg2+] affect the structure and the functionality (as measured by changes in the kinetics of Ca2+ uptake) of the SR membrane. Membrane lipid phase behavior and changes in the Ca2+ ATPase profile structure seem to be related, and we have found that structural changes are responsible for the slowing of the kinetics of the fast phase of Ca2+ uptake, and could also mediate the effect that [Mg2+] has on E1 approximately P lifetime.  相似文献   

10.
E G Kranias  F Mandel  T Wang  A Schwartz 《Biochemistry》1980,19(23):5434-5439
Canine cardiac sarcoplasmic reticulum (SR) is known to be phosphorylated by adenosine 3',5'-monophosphate (cAMP) dependent protein kinase on a 22 000-dalton protein. Phosphorylation enhances the initial rate of Ca2+ uptake and Ca2+-ATPase activity. To determine the molecular mechanism by which phosphorylation regulates the calcium pump in SR, we examined the effect of cAMP-dependent protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Cardiac sarcoplasmic reticulum was preincubated with cAMP and cAMP-dependent protein kinse in the presence (phosphorylated SR) and absence (control) of adenosine 5'-triphosphate (ATP). Control and phosphorylated SR were subsequently assayed for formation (4-200 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase in media containing 100 microM [ATP] and various free [Ca2+]. cAMP-dependent phosphorylation of SR resulted in pronounced stimulation of initial rates and levels of E approximately P formed at low free [Ca2+] (less than or equal to 7 microM), but the effect was less at high free Ca2+ (greater than or equal to 10 microM). This stimulation was associated with a decrease in the dissociation constant for Ca2+ binding and a possible increase in Ca2+ sites. The observed rate constant for E approximately P formation of calcium-preincubated SR was not significantly altered by phosphorylation. Phosphorylation also increased the initial rate of E approximately P decomposition. These findings indicate that phosphorylation of cardiac SR by cAMP-dependent protein kinase regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the calcium pump observed at steady state.  相似文献   

11.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

12.
An acid-stable phosphoprotein was formed in a microsomal membrane fraction isolated from bovine aortic smooth muscle in the presence of Mg2+ + ATP and Ca2+. The microsomes also showed Ca2+ uptake activity. The Ca2+ dependence of phosphoprotein formation and of Ca2+ uptake occurred over the same range of Ca2+ concentration (1-10 microM), and resembled similar findings from rabbit skeletal microsomes. The molecular weight of the phosphorylated protein, estimated by SDS-gel electrophoresis, was approximately 105,000. The phosphoprotein was labile at alkaline pH, and its decomposition was accelerated by hydroxylamine. Half-maximum incorporation of 32P in the presence of 10 microM Ca2+ occurred at 60 nM ATP. The calcium-dependent phosphoprotein formation was not affected by 5 mM NaN3, but was inhibited in a dose-dependent fashion by ADP with a 50% inhibition occurring at 180 microM. Fifty mM MgCl2 was required for the maximal phosphorylation. The rate of phosphoprotein decomposition after adding 2 mM EGTA was accelerated by varying the Mg2+ concentration from 10 microM to 3 mM. Alkaline pH (9.0) slowed the rate of phosphoprotein decay. Optimal Ca2+-dependent phosphoprotein occurred at 15 degrees C over a broad pH range (6.4 to 9.0). The activation energy of EGTA-induced phosphoprotein decomposition was 25.6 kcal/mol between 0 and 16 degrees C and 14.6 kcal/mol between 16 and 30 degrees C. The phosphoprotein formed by aortic microsomes was thus quite similar to the acid-stable phosphorylated intermediate of the Ca2+-transport ATPase of sarcoplasmic reticulum from skeletal and cardiac muscle. These data suggest that the Ca2+-dependent phosphoprotein is a reaction intermediate of the Ca2+,Mg2+-ATPase of the aortic microsomes.  相似文献   

13.
Kinetic measurement of the reaction of dynein ATPase (ATP phosphohydrolase, EC 3.6.1.3) extracted from the gills of Mytilus edulis shows that in the presence of Mg2+ there is a very rapid initial liberation of Pi from the dynein-ATP system, followed by a slower liberation in the steady state. In view of following results, we have confirmed that this phenomenon is not due to the accumulation of end products, a fall in substrate concentration, nor to the presence of labile impurities in ATP but is due to the catalytic activity of dynein ATPase. 1. The replacement of native dynein by heat denatured dynein or other kinds of Mg2+-ATPase could not produce such a burst phenomenon under the same condition. 2. Both the rate of initial burst and that of steady state were proportional to enzyme content over a wide range under our standard condition. 3. Initial burst was also observed under the constant ATP level by using a ATP generate system. 4. Preincubation of dynein with Pi prior to initiation of the reaction did not eliminate the initial burst. Some properties of the initial rapid liberation of dynein ATPase were also examined. These are shown below. 5. The free ADP liberation did not show any initial burst though the Pi liberation did in the initial phase and the rate of free ADP liberation was almost equal to that of Pi liberation of the steady state. 6. Mg2+ was more effective than Ca2+ for the appearance of the initial burst while the liberation of Pi in the steady state was activated more by Ca2+ than by Mg2+. The addition of K+ in the presence of Mg2+ resulted in a marked increase of Pi liberation in the steady state but not in the initial state. 7. The activation energy of the initial burst was 9.7 kcal, which is slightly smaller than that of myosin ATPase.  相似文献   

14.
Formation and decomposition of the phosphorylated intermediate of endoplasmic reticulum (Ca2+ + Mg2+)-ATPase from pancreatic acinar cells have been studied using lithium dodecyl sulfate- and tetradecyltrimethylammonium bromide-polyacrylamide gel electrophoresis. Incorporation of 32P from [gamma-32P]ATP is Ca2+-dependent (approximate Km for free [Ca2+] = 2-3 X 10(-8) mol/liter). Formation of the 100-kDa phosphoprotein is rapid, reaching maximal 32Pi incorporation within 1 s at room temperature. At 4 degrees C, phosphorylation is slower and dephosphorylation is drastically decreased. For dephosphorylation, Mg2+ and monovalent cations such as K+ or Na+ are necessary. Vanadate inhibits both 32P incorporation and 32P liberation dose dependently (Km = 3 X 10(-6) mol/liter), whereas mitochondrial inhibitors and ouabain have no effect. The phosphoprotein is stable at pH 2 and destabilizes with increasing pH being completely decomposed at pH 9. Reduction of 32P incorporation in the presence of high concentrations of cold ATP and hydroxylamine suggests formation of acylphosphate present in the ATPase intermediate. The characteristics of Ca2+, cation, and pH dependencies of the ATPase activity are similar to those previously described for MgATP-dependent Ca2+ transport into rough endoplasmic reticulum from pancreatic acinar cells (Bayerd?rffer, E., Streb, H., Eckhardt, L., Haase, W., and Schulz, I. (1984) J. Membr. Biol. 81, 69-82). The data suggest that the 100-kDa phosphoprotein as described in this study is the intermediate of this Ca2+ transport ATPase.  相似文献   

15.
Sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle were solubilized with a high concentration of dodecyl octaethyleneglycol monoether (C12E8) and the kinetic properties of the Ca2+,Mg2+-dependent ATPase [EC 3.6.1.3] were studied. The following results were obtained: 1. SR ATPase solubilized in C12E8 retains high ability to form phosphoenzyme ([EP] = 4--5 mol/10(6) g protein) for at least two days in the presence of 5 mM Ca2+, 0.5 M KCl, and 20% glycerol at pH 7.55. 2. The ATPase activity was dependent on both Mg2+ and Ca2+. However, the rate of E32P decay after the addition of unlabeled ATP was independent of Mg2+. 3. Most of the EP formed in the absence of Mg2+ was capable of reacting with ADP to form ATP in the backward reaction. However, in the presence of 5 mM Mg2+, the amount of ATP formed was markedly reduced without loss of the reactivity of the EP with ADP. 4. The removal of C12E8 from the ATPase by the use of Bio-Beads resulted in the full restoration of the Mg2+ dependency of the EP decomposition. 5. These results strongly suggest that in the case of SR solubilized with a high concentration of C12E8 the decomposition of phosphoenzyme is Mg2+ independent and ATP is mainly hydrolyzed through Mg2+-dependent decomposition of an enzyme-ATP complex, which is in equilibrium with phosphoenzyme and ADP.  相似文献   

16.
Energetics of the calcium-transporting ATPase   总被引:11,自引:0,他引:11  
A thermodynamic cycle for catalysis of calcium transport by the sarcoplasmic reticulum ATPase is described, based on equilibrium constants for the microscopic steps of the reaction shown in Equation 1 under a single set of experimental (formula; see text) conditions (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4): KCa = 5.9 X 10(-12) M2, K alpha ATP = 15 microM, Kint = 0.47, K alpha ADP = 0.73 mM, K'int = 1.7, K"Ca = 2.2 X 10(-6) M2, and Kp = 37 mM. The value of K"Ca was calculated by difference, from the free energy of hydrolysis of ATP. The spontaneous formation of an acylphosphate from Pi and E is made possible by the expression of 12.5 kcal mol-1 of noncovalent binding energy in E-P. Only 1.9 kcal mol-1 of binding energy is expressed in E X Pi. There is a mutual destabilization of bound phosphate and calcium in E-P X Ca2, with delta GD = 7.6 kcal mol-1, that permits transfer of phosphate to ADP and transfer of calcium to a concentrated calcium pool inside the vesicle. It is suggested that the ordered kinetic mechanism for the dissociation of E-P X Ca2, with phosphate transfer to ADP before calcium dissociation outside and phosphate transfer to water after calcium dissociation inside, preserves the Gibbs energies of these ligands and makes a major contribution to the coupling in the transport process. A lag (approximately 5 ms) before the appearance of E-P after mixing E and Pi at pH 6 is diminished by ATP and by increased [Pi]. This suggests that ATP accelerates the binding of Pi. The weak inhibition by ATP of E-P formation at equilibrium also suggests that ATP and phosphate can bind simultaneously to the enzyme at pH 6. Rate constants are greater than or equal to 115 s-1 for all the steps in the reaction sequence to form E-32P X Ca2 from E-P, Ca2+ and [32P]ATP at pH 7. E-P X Ca2 decomposes with kappa = 17 s-1, which shows that it is a kinetically competent intermediate. The value of kappa decreases to 4 s-1 if the intermediate is formed in the presence of 2 mM Ca2+. This decrease and inhibition of turnover by greater than 0.1 mM Ca2+ may result from slow decomposition of E-P X Ca3.  相似文献   

17.
Phosphorylation of NaI-treated bovine brain cortex microsomes by inorganic phosphate in the presence of Mg2+ and ouabain has been studied at 0 degrees C (pH 7.4) and 20 degrees C (pH 7.0). Nearly maximal (90%) and half-maximal phosphorylation are achieved at 20 degrees C within 2 min with 50--155 and 5.6--17 muM 32Pi, respectively, and at 0 degrees C within 75 s with 300--600 and 33--66 muM 32Pi, respectively. Maximal phosphorylation yields 146 pmol 32P - mg-1 protein. Without ouabain (20 degrees C, pH 7.0) less than 25% of the incorporation observed in the presence of ouabain is reached. Preincubation of the native microsomes with Mg2+ and K+, in order to decompose possibly present high-energy phosphoryl-bonds prior to ouabain treatment, does not affect the maximal phosphate incorporation. This indicates that the inorganic phosphate incorporation is not due to an exchange with high-energy phosphoryl-bonds, which might have been preserved in the microsomal preparations. Phosphorylation of the native microsomes by ATP in the presence of Mg2+ and Na+ reaches 90 and 50% maximal levels within 15--30 s at 0 degrees C and pH 7.4 at concentrations of [gamma-32P]ATP of 5--32 and 0.5--3.5 muM, respectively. The maximal phosphorylation level is 149 pmol 32P-mg-1 protein, equal to that of ouabain-treated microsomes phosphorylated by inorganic phosphate. Both inorganic phosphate and ATP phosphorylate on site per active enzyme subunit of 135 000 molecular weight. From the equilibrium constants for the phosphorylation of ouabain-treated microsomes by inorganic phosphate at 0 degrees C and 20 degrees C standard free-energy changes of --5.4 and --6.8 kcal/mol, respectively, are calculated. These values yield a standard enthalpy change of 14 kcal/mol and an entropy change of 70 cal/mol - degree K. This characterizes the reaction as a process driven by an entropy change. The intermediate formed by phosphorylation with Pi has maximal stability at acidic pH, as is the case for the intermediate formed with ATP. Solubilization in sodium dodecyl sulfate stabilizes the phosphoryl-bond in the pH range of 4--7. The non-solubilized preparation has optimal stability at pH 2--4, the level of which is equal to that of detergent-solubilized intermediate. Sodium dodecyl sulfate gel electrophoresis of the microsomes at pH 3, following incorporation of 32Pi yields 11 protein bands, only one of which (mol. wt 100 000--106 000) carries the radioactive label. This protein has the same molecular weight as the protein, which is phosphorylated by ATP in the presence of Mg2+ and Na+.  相似文献   

18.
The characteristics of phosphorylation of the 78-kDa glucose-regulated protein (Grp78), also known as the immunoglobulin heavy chain binding protein, were studied in vitro and in vivo. The purified protein from either calf liver or bovine kidney cells (MDBK) could be phosphorylated in vitro with [gamma-32P]ATP, in a reaction that is stimulated by Ca2+ and inhibited by the Ca(2+)-chelator ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid (EGTA). In the presence of EGTA, excess Ca2+ increased the rate of phosphorylation about 18-fold. Based on EGTA/Ca2+ titrations, the optimal Ca2+ concentration for phosphorylation was estimated to be 10-50 microM. Other divalent cations such as Mg2+, Mn2+, and Zn2+ were found to be inhibitory as was the Ca2+ antagonist lanthanum (La3+). The in vivo phosphorylation of Grp78 was studied in MDBK cells labeled with 32Pi. In the presence of inducers of Grp78 synthesis, such as ionomycin, tunicamycin, or 2-deoxyglucose, there was a large increase in the level of Grp78 in the cells but a decrease in the amount of phosphorylated protein. Two-dimensional gel analysis of Grp78 purified from bovine liver and MDBK cells identified at least four isoforms. After in vivo and in vitro phosphorylation of Grp78 all the acidic isoforms contained radioactivity but not the most basic isoform. Phosphoamino acid analysis of Grp78 showed that serine and threonine were phosphorylated in vivo and only threonine was phosphorylated in vitro.  相似文献   

19.
A rapid mixing technique was used to investigate the effects of Ca2+ ion on the kinetics of ATP hydrolysis by sarcoplasmic reticulum vesicles. "Basic" ATPase measured in the absence of Ca2+ showed an initial burst of inorganic phosphate production. Similarities in the transient state kinetic properties of basic and "extra" or Ca2+-dependent ATPase suggest that the two activities represent a single enzyme species. At low concentrations of Ca2+ (less than 10(-6) M) the time course of the partial reactions of extra ATPase appeared to fit a simple scheme in which the acid-stable, phosphorylated enzyme (E approximately P) breaks down directly to inorganic phosphate and free enzyme. A similar mechanism seemed to apply to moderate levels of ATP and high external concentrations of Ca2+ known to inhibit transport activity. In the intermediate range of Ca2+ concentrations inorganic phosphate production was resolved into two phases consisting of a fast initial rate (burst) and slow steady state. Acid-stable phosphorylated protein showed a transient decay which coincided with the appearance of the burst. This behavior is consistent with a scheme in which E approximately P breaks down to an acid-labile or noncovalent intermediate state (E-P). A slow secondary increase in phosphorylation followed the transient decay in E approximately P. This late phase of protein labeling was eliminated following pretreatment with Triton X-100, sodium oxalate, or diethyl ether which decrease or prevent the formation of a transport gradient. An analysis of the dependence of the steady state level of phosphorylation and rate of inorganic phosphate production on Ca2+ concentration indicated that the phosphorylation mechanism involves interaction of two Ca2+ ions with the enzymatic carrier. The pathway by which E approximately P breaks down, i.e. whether it goes to E + Pi or E-P, may depend on the extent to which these sites are occupied by Ca2+. The transport of Ca2+ is discussed in terms of a flip-flop mechanism in which E approximately P and E-P represent high and low affinity Ca2+ binding states occurring in separate halves of an enzyme dimer.  相似文献   

20.
The ATPase of the sarcoplasmic reticulum is phosphorylated by ATP in the presence of Ca2+. A rapid phosphorylation was observed when the enzyme was preincubated with Ca2+ prior to the addition of 0.1 or 1 mM ATP. The rate of phosphorylation was decreased when Ca2+ was omitted from the preincubation medium and added with ATP when the reaction was started. The rate of phosphorylation by ATP was further decreased when Pi was included in the preincubation medium without Ca2+. In this case, the enzyme was phosphorylated by Pi during the preincubation. When Ca2+ and ATP were added, a burst of phosphorylation by ATP was observed in the initial 16 ms. In the subsequent incubation intervals, the phosphorylation by ATP was synchronous with the hydrolysis of the phosphoenzyme formed by Pi. The rate of hydrolysis of the phosphoenzyme formed by Pi was measured when either the Pi concentration was decreased 10 fold, or when Ca2+, ATP or ATP plus Ca2+ was added to the medium. Upon the single addition of Ca2+, the time for half-maximal decay was in the range 500--1000 ms. In all other conditions it was in the range 70--90 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号