首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
应用RACE技术克隆脊尾白虾血蓝蛋白大亚基基因, 并通过攻毒实验揭示脊尾白虾血蓝蛋白基因的先天免疫防御作用, 为脊尾白虾(Exopalaemon carinicauda)的免疫防治研究提供依据和思路。研究成功克隆了脊尾白虾血蓝蛋白大亚基基因全长cDNA序列, 该大亚基cDNA全长 2192 bp, 开放式阅读框长 2034 bp, 5′非编码区长 21 bp, 3′非编码区长 137 bp, 将该基因命名为 EcHcL。EcHcL编码 667 个氨基酸, 前 21 个氨基酸组成信号肽, 推测成熟肽的分子量为 78.5 kD。Blast比对结果显示, 由脊尾白虾血蓝蛋白EcHcL序列推导的氨基酸序列与日本沼虾、凡纳滨对虾血蓝蛋白氨基酸序列的同源性分别达到 87%、73%, 其M结构域氨基酸序列与斑节对虾、日本对虾等物种同源性性高达 90% 左右, 由此推断该cDNA序列属于血蓝蛋白家族。组织表达分析结果显示, EcHcL基因在脊尾白虾鳃、卵巢、肝胰腺、心脏、肠、肌肉、胃、腹神经节、眼柄、血细胞中均有表达, 肝胰腺中相对表达量最高。Real-time PCR分析发现EcHcL基因在金黄色葡萄球菌、副溶血弧菌和对虾白斑综合征病毒(WSSV)感染后脊尾白虾肝胰腺和血细胞中的表达量显著增加, 并具有不同的时空表达模式, 推测脊尾白虾EcHcL基因在免疫防御中具有重要作用。  相似文献   

7.
8.
The clottable protein (CP) involved in Penaeus monodon haemolymph coagulation has previously been characterized and cloned. Polyclonal antibodies against purified CP were also prepared from rabbit serum. By Western blot analyses, we showed occurrence of CP in the shrimp central nervous system, gill, and lymphoid organ. Results of RT-PCR further indicated that the central nervous system, gill, and lymphoid organ transcribed more CP, heart and hepatopancreas transcribed less, while the haemocytes and the muscle did not. We further analyzed the CP distribution within shrimp lymphoid organ by immunohistochemical method, CP was found to localise in stromal cells of lymphoid organ rather than in the developing haemocytes. In addition, concentrations and regulation of the plasma CP under normal and artificially traumatic conditions were studied with rocket immunoelectrophoresis. The average plasma CP concentration in normal intermolt shrimps was elevated from 3 mg ml(-1) to above 12 mg ml(-1) after successive blood-withdrawing for a week. The production and secretion of CP apparently were increased more than 4 folds to compensate its loss. Our result also suggested that the shrimp sinus gland endocrine system is not directly required for the expression and up-regulation of CP.  相似文献   

9.
10.
The tissue damage induced by various organic pollutants in aquatic animals is well documented, but there is a dearth of information relating to the histological alterations induced by copper in the spiny lobster. In the present study, intermoult juveniles of the spiny lobster Panulirus homarus (average weight 150–200 g) were exposed to two sublethal concentrations of the copper (9.55 and 19.1 μg/l) for a period of 28 days. The muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of the lobsters were then dissected out and processed for light microscopic studies. Exposure to copper was found to result in several alterations in the histoarchitecture of the muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of P. homarus. The alterations included disruption and congestion of muscle bundle in muscle tissue; blackened haemocytes; distended lumen and F cell; necrosis of the tubules of the hepatopancreas; disarrangement of circular muscle of the midgut; accumulation of haemocytes in the haemocoelic space; swelling and fusion of lamellae; abnormal gill tips; hyperplastic, necrotic, and blackened secondary gill lamellae of the gills; damaged neurosecretory cell and sensory and motor fibre; necrotic of the thoracic ganglion; dispersedly arranged muscle bands; clumped satellite cells and nucleus of the heart. The results obtained suggest that the muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of lobsters exposed to copper were structurally altered. Such alterations could affect vital physiological functions, such as absorption, storage and secretion of the hepatopancreas, digestion of gut and respiration, osmotic and ionic regulations of the gills, which in turn could ultimately affect the survival and growth of P. homarus. Thus, all possible remedial measures should be adopted to prevent the occurrence of copper contamination in the aquatic environment.  相似文献   

11.
12.
13.
14.
Heat shock protein 70s (HSP70s) are fundamental chaperone proteins that are indispensable to most living organisms. In order to investigate the function of HSP70 and heat shock response in shrimp, a heat shock cognate (HSC70) gene of the white shrimp (Litopenaeus vannamei), containing a 1959-bp open reading frame, was cloned and characterized. The amino acid sequence, 71.5 kDa of molecular weight, shares 80-99.6% homology with 12 diverse species' HSP70s and HSC70s. In fact, some segments of the eukaryotic HSC70 sequence, such as ATP/GTP-binding site, cytoplasmic HSP70 C-terminal sequence, and GGMP/GAP repeats, are also found in the putative shrimp HSC70. Moreover, multi-tissue RT-PCR was performed to assay the basal expressions of HSC70 in the heart, gill, hepatopancreas, stomach, gut, and muscle. The results demonstrate that the basal expressions of HSC70 in theses organs are similar to that of beta-actin. Furthermore, quantitative real-time experiments showed that HSC70 was up-regulated in hepatopancreas (4.6-fold), stomach (5.9-fold), gut (2.6-fold), and muscle (3.5-fold) but not in the heart (1.7-fold) and gill (1.6-fold) after 2 h of heat shock. Nevertheless, the HSC70 was found to be highly expressed in the heart and gill following 6 h of heat shock. This suggests that HSC70 in white shrimp possess both short-term and long-term responses to heat shock stress, indicating this HSC70 may be a heat-dependent HSC70 member. Finally, we constructed an expression vector to generate HSC70 in Escherichia coli BL21, which displayed immune cross-reactivity with mouse HSP70 antibody. In conclusion, the identification and expression of white shrimp HSC70 gene present useful data for studying the molecular mechanism of heat shock response and the effect of heat shock proteins in shrimps' cytoprotection.  相似文献   

15.
A full-length cDNA encoding vitellogenin (Vg) was cloned from Chinese shrimp, Fenneropenaeus chinensis using RACE method. The full-length cDNA consist of 7,942 nucleotides including a 7,761 bp open reading frame, which encodes 2,587 amino acid residues. The deduced amino acid sequence showed high (from 94% to 37%) identity with other known crustacean Vgs. In addition, a consensus cleavage site (R-X-K/R-R) recognized by an endopeptidase and a member of subtilisin family of serine protease were identified in the deduced Vg precursor. RT-PCR analysis shown that Vg mRNA can be detected in both ovary and hepatopancreas of vitellogenic females but not in other experimental tissues including muscle, heart, lymph organ, gill, haemocytes and intestine. These results suggest that the Vg gene may be expressed exclusively in mature females, and both ovary and hepatopancreas are the possible tissues for Vg synthesis in F. chinensis. In addition, Vg gene is detected in genomic DNA of both females and males.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号