首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Gibel carp Carassius gibelio (Bloch) was first introduced into fish ponds and small lakes of Estonia in 1948–49, and first detected in Estonian brackish waters (Gulf of Riga) in 1985. Since the mid‐1990s, the species has spread along the entire Estonian Baltic coastline. Growth rate in the brackish water population does not differ much from freshwater populations, but the freshwater populations are gynogenetic (or show high dominance of females) in contrast to the Baltic Sea population, which presents a normal sex ratio. The recent explosion of this species in the Baltic Sea could be explained by unusually warm summers during the 1990s and by the low abundance of predatory fish.  相似文献   

2.
We found all developmental stages of the midge Telmatogeton japonicus (Chironomidae) on offshore windmills near the major Swedish seaport Kalmar in the southern Baltic Sea. This might be the first record of an insect species really inhabiting the offshore areas of the Baltic Sea. A thorough analysis of previous findings of the species, its history in Europe and its ecology indicates that T. japonicus quite likely is an alien species in Europe introduced from the Pacific Ocean. Shipping is probably the vector, as all records in the Baltic Sea and several from the Eastern Atlantic Sea are near major seaports. Our analysis further suggests that T. japonicus might be both advantageous and disadvantageous to native species in the Baltic Sea. T. japonicus should be kept under observation within monitoring programmes as it might expand its distribution as a result of the construction of new windmills in the Baltic Sea and elsewhere in European marine and brackish water habitats.  相似文献   

3.
Since 1985, the nonindigenous polychaete species Marenzelleria neglecta has been found in the Baltic Sea. The species, which was introduced by ship ballast water, spreads rapidly and dominates in many habitats today. Using three gene segments of the mitochondrial DNA (16S rDNA, Cytochrom oxidase I, Cytochrom b), we investigated four populations of the western and northern Baltic Sea in a preliminary survey and compared them with four other populations from the North Sea, the Baltic Sea and from the Arctic. First, we could demonstrate the applicability of the markers to discriminate the species with certainty. Second, with M. viridis and M. arctia, we could detect two more species of the same genus, which have recently been introduced into the Baltic Sea. One of these, M. arctia, was hitherto known as an exclusive arctic member of the genus. The impact of these two recently invaded Marenzelleria species onto the autochthonous fauna needs to be evaluated in the future. The Baltic Sea as a ‘natural aquarium’ now offers the possibility to investigate sibling species simultaneously. However, correct identification and denomination of Marenzelleria species are indispensable prerequisites for all future studies. Molecular markers allow the exact identification of all Marenzelleria species and must be used whenever a classical taxonomic identification is uncertain.  相似文献   

4.
Several species of scyphozoan medusae occur in river estuaries and other brackish waters but it is often unknown if the planulae settle and the scyphopolyps reproduce in those low-salinity waters. In the present study, scyphozoan species from the German Bight (North Sea) were tested in laboratory experiments to investigate their tolerance of low salinity. Planula larvae released from medusae in salinity 32 were still active after the salinity was reduced to 10 (Cyanea capillata, Cyanea lamarckii) and to 7 (Chrysaora hysoscella) in laboratory treatments. Planulae did not settle on the undersides of floating substrates when salinity was reduced to <20. By contrast, planulae released from C. capillata medusae in Kiel Bight (western Baltic Sea) in salinity 15 developed into polyps in laboratory cultures. Polyps reared from planulae in salinity 36 survived a reduction to 12 (C. capillata, C. lamarckii) and to 8 (Aurelia aurita). Polyps of all tested species strobilated and released young medusae (ephyrae) in salinity 12. These results show a high tolerance of planulae and polyps to low salinity, indicating their possible occurrence in estuaries and brackish waters. In addition to laboratory observations, young C. capillata ephyrae were collected in the western Baltic Sea (Kiel Bight) in salinity 15, which indicates that they were probably released by a local polyp population. We suggest that the polyps of the painfully stinging lion’s mane, C. capillata, may be more widespread in the Baltic Sea than previously assumed and that the occurrence of the medusae may not only depend on inflow of water masses from the North Sea.  相似文献   

5.
The occurrence of Chara connivens (Charophyta, Characeae) and its status in the Baltic Sea may raise controversies regarding its origin and historical dispersal pathways in the area. This study critically revises the protection status of C. connivens in the countries around the Baltic Sea, as well as its status on the red lists of endangered plant species (including the HELCOM Red List). The first reports on the presence of C. connivens in the Baltic Sea area were published in the aftermath of Carl Baenitz’s talks given in the early 1870s. Already then, the scientific community was well aware of the fact that C. connivens had been introduced as a ballast plant to the known Baltic areas of occurrence – the first known record of the species is from 1829. Since Poland is the only country where C. connivens is protected, the historical and contemporary distribution of this charophyte in the Polish coastal waters is presented against the background of the available historical and recent records of the species in the Baltic Sea. Recent reports from the second half of the 20th century and the beginning of the 21st century have confirmed a fairly common occurrence of C. connivens in Estonia, Sweden and Poland. This species still occurs on the German coast and has also been reported from Finland (the Åland archipelago). In recent decades, however, the species was considered rare in the Baltic Sea area. In Poland, C. connivens was even classified as extinct, despite earlier data on its occurrence in the Vistula Lagoon in the 1970s, where it was rediscovered in 2011. It was also found in the Szczecin Lagoon a year later. Both localities well suit Luther’s pattern of C. connivens occurrence in areas with intensive shipping and ballast discharge operations in historical times. Based on this in-depth revision of historical and current distribution, it is postulated that C. connivens, as non-indigenous, should not be red-listed in the Baltic Sea area, following the example of Finland. Moreover, its legal status in Poland of a strictly protected species should be reconsidered.  相似文献   

6.
During the latest years medium-sized (15–30 μm), single-celled dinoflagellates have been reported to form blooms in the northern Baltic Proper and the Gulf of Finland in winter and spring. Recent studies (Kremp et al., 2003. Proceedings of the 7th International conference of Modern and Fossil Dinoflagellates, September 21–25, Nagasaki, Japan, 66 pp.) indicate that those blooms are caused by two isomorphic species – Scrippsiella hangoei (Schiller) Larsen, and a new species, tentatively belonging to the genus Woloszynskia. Until now there has been no report on how widely distributed these phytoplankton species are in the Baltic Sea. In this study, the occurrence of Scrippsiella/Woloszynskia complex in the entire Baltic Sea was investigated, by using monitoring data from 1997 to 2003. The species occurred in a salinity range from 2 to 8 PSU. Highest concentrations were observed at salinity 4.5–6.5 PSU. Maximum cell densities of Scrippsiella/Woloszynskia complex in the water column were mainly obtained in April or in the beginning of May by the water temperature <3 °C prior to stratification was formed. In the central Gulf of Finland, the second maximum was found in 1999 and 2002 by the temperature >6 °C. Bloom formations in the Baltic Proper and in the Gulf of Finland may not only be explained by optimum temperature and salinity, but also with other factors e.g. high nutrient concentrations and good seeding conditions from the sediments.  相似文献   

7.
Puntila-Dodd  R.  Bekkevold  D.  Behrens  J. W. 《Hydrobiologia》2021,848(2):421-429

Species invasions often occur on coasts and estuaries where abiotic conditions vary, e.g. salinity, temperature, runoff etc. Successful establishment and dispersal of non-indigenous species in many such systems are poorly understood, partially since the species tend to show genetic and ecological plasticity at population level towards many abiotic conditions, including salinity tolerance. Plasticity may be driven by shifting expression of heat shock proteins such as Hsp70, which is widely recognized as indicator of physical stress. In this study, we developed a qPCR assay for expression of the hsp70 gene in the invasive round goby (Neogobius melanostomus) and tested the expression response of fish collected from a brackish environment in the western Baltic Sea to three different salinities, 0, 10 and 30. hsp70 expression was highest in fresh water, indicating higher stress, and lower at brackish (ambient condition for the sampled population) and oceanic salinities, suggestive of low stress response to salinities above the population’s current distribution. The highest stress in fresh water was surprising since populations in fresh water exist, e.g. large European rivers and Laurentian Great Lakes. The results have implications to predictions for the species’ plasticity potential and possible range expansion of the species into other salinity regimes.

  相似文献   

8.
In one of the largest European rivers, the Elbe, from its source in the Czech Republic to the German North Sea, 31 alien macrozoobenthic species have been recorded in total. Most of these species have been introduced by shipping activities. With a total number of 21 species, many of the established aliens occur—partly exclusively—in the brackish area of the Elbe estuary. In order to explain this observed settlement characteristic, four main arguments come into consideration: (1) estuaries with intensive international shipping have a higher potential infection rate than other aquatic zones; (2) brackish water species have, due to specific physiological characteristics, a better chance of being transported alive than euhaline or freshwater species and they also probably have a higher perennation and establishment potential after release; (3) brackish waters have the greatest natural ‘indigenous species minimum’, so that more alien species can potentially establish; and (4) salt-tolerant limnetic alien species introduced into inland water reached the coast at first in the estuaries. It seems that the combination of brackish water with its unsaturated ecological niches and intensive international ship traffic has the highest potential infection rate for aquatic systems with alien macrozoobenthic species. And, estuaries are subjected to a two-sided invasion pressure by alien species, via the ocean (mainly shipping) and via inland waters (mainly shipping canal construction). The identification of such patterns is an important prerequisite for the development of a forward-looking alien monitoring and management strategy.  相似文献   

9.
This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty‐three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local‐scale genetic variation is recommended.  相似文献   

10.
Inconsistent use of terminology plagues the study and management of biological invasions. The term “invasive” has been used to describe inter alia (1) any introduced non-indigenous species; (2) introduced species that spread rapidly in a new region; and (3) introduced species that have harmful environmental impacts, particularly on native species. The second definition in various forms is more commonly used by ecologists, while the third definition is pervasive in policy papers and legislation. We tested the relationship between the invasiveness of an introduced species and its impact on native biodiversity. We quantified a species’ invasiveness by both its rate of establishment and its rate of spread, while its impact was assigned a categorical ranking based on the documented effects of the invader on native species populations. We found no correlations between these variables for introduced plants, mammals, fishes, invertebrates, amphibians and reptiles, suggesting that the mechanisms of invasion and impact are not strongly linked. Our results support the view that the term “invasive” should not be used to connote negative environmental impact.  相似文献   

11.
Although the Chinese mitten crab Eriocheir sinensis (H. Milne-Edwards, 1853) (Crustacea, Decapoda, Varunidae) invaded the Baltic Sea about 80 years ago, published information on its present distribution and abundance in this region is lacking. We provide here information on its Baltic-wide distribution and long-term population dynamics. The species has been found all over the coastal Baltic Sea and also in some adjacent rivers and lakes. The Chinese mitten crab appears to have increased in abundance in recent years in the northeastern part of the Baltic Sea (Gulf of Finland, Gulf of Riga, northern Baltic Proper). Higher catch rates were observed in spring (April–June) and autumn (September–November). The size variation of crabs in different samples was low (mean carapace width 6.1–6.3 cm). Despite findings of gravid females, the reproduction of the mitten crab in the central, northern and eastern Baltic region is considered unlikely due to low salinity and the individuals caught are assumed to actively migrate into the region from the species’ main European distribution area (southeastern North Sea), certainly over 1500 km migration distance. Thus, the dynamics of the North Sea population is probably regulating, at least in part, the occurrence of the Chinese mitten crab in the Baltic Sea area.  相似文献   

12.

Aim

The Baltic Sea forms a unique regional sea with its salinity gradient ranging from marine to nearly freshwater conditions. It is one of the most environmentally impacted brackish seas worldwide, and the low biodiversity makes it particularly sensitive to anthropogenic pressures including climate change. We applied a novel combination of models to predict the fate of one of the dominant foundation species in the Baltic Sea, the bladder wrack Fucus vesiculosus.

Location

The Baltic Sea.

Methods

We used a species distribution model to predict climate change‐induced displacement of F. vesiculosus and combined these projections with a biophysical model of dispersal and connectivity to explore whether the dispersal rate of locally adapted genotypes may match estimated climate velocities to recolonize the receding salinity gradient. In addition, we used a population dynamic model to assess possible effects of habitat fragmentation.

Results

The species distribution model showed that the habitat of F. vesiculosus is expected to dramatically shrink, mainly caused by the predicted reduction of salinity. In addition, the dispersal rate of locally adapted genotypes may not keep pace with estimated climate velocities rendering the recolonization of the receding salinity gradient more difficult. A simplistic model of population dynamics also indicated that the risk of local extinction may increase due to future habitat fragmentation.

Main conclusions

Results point to a significant risk of locally adapted genotypes being unable to shift their ranges sufficiently fast considering the restricted dispersal and long generation time. The worst scenario is that F. vesiculosus may disappear from large parts of the Baltic Sea before the end of this century with large effects on the biodiversity and ecosystem functioning. We finally discuss how to reduce this risk through conservation actions, including assisted colonization and assisted evolution.  相似文献   

13.
Open circuit potentials of stainless steels increased when immersed in the Baltic Sea. The ennoblement potential was +200 mVsce in 40 to 50 days when sea water temperature was below 52°C and +300–400 mVsce within <40 days at around 102°C. Ennoblement occurred in a laboratory ecosystem at 232°C in 20 to 30 days, and at 262°C in <20 days, but no ennoblement occurred at A322°C within 40 days. By the time the ennoblement was complete, compact microcolonies covered 1–10% of the steel surface. Nutrient enrichment of Baltic Sea water by twofold above the natural levels increased microbial growth but attenuated open circuit potential increase of the stainless steels. Exposure of the ennobled stainless steels to similar levels of nutrients did not reverse the already developed open circuit potentials. Attenuation of the ennobling response of the stainless steels by increases of temperature and eutrophication suggests a role for microorganisms which is crucial for the electrochemical behaviour of steels in brackish Baltic Sea water. Journal of Industrial Microbiology & Biotechnology (2000) 24, 410–420. Received 02 November 1999/ Accepted in revised form 24 March 2000  相似文献   

14.
Long-term research in the Baltic Sea revealed the basic trends of zooplankton community variations depending on oceanographic processes. Alternation of the periods of increase and decrease in salinity of the Baltic Sea against the background of climate changes (temperature increase) and eutrophication affect the state of the entire Baltic ecosystem, including zooplankton. For these periods, the dynamics of zooplankton in the Baltic Sea were analyzed based on literature data and results of regular research in the southeastern Baltic Sea during 1998–2007. The changes in the hydrological situation were accompanied by significant changes in the zooplankton community. In the 1990s–2000s, the abundance and biomass of brackish-water and thermophilous species primarily of Cladocera and Copepoda increased markedly. The role of the previously dominant marine copepod Pseudocalanus elongatus decreased due to salinity reduction in the deep-water part of the Baltic Sea. Maximum development of zooplankton occurred in years of the greatest warming-up of the water (2001, 2005–2007) against the background of a general positive trend of zooplankton abundance in the last decade.  相似文献   

15.
Characteristics important in identification of Heterocapsa species (i.e., thecal plate pattern, body scale structure, and shape and position of the nucleus and pyrenoid) are practically identical in the dinoflagellate investigated here and in Heterocapsa arctica T. Horig. described from the Canadian Arctic. Analysis of internal transcribed spacer (ITS) sequences confirms that the two dinoflagellates are very closely related; however, there is a clear difference in their size and shape. Our experiments show that the low‐salinity Baltic Sea brackish water does not reduce the size of the marine H. arctica to match that of the Baltic Sea morphotype. On the basis of these dissimilarities in general morphology and its geographic isolation in the Baltic Sea, we consider our material sufficiently differentiated from the typical H. arctica to warrant the status of a new subspecies, H. arctica subsp. frigida subsp. nov. Being of a distinct cell shape, the occurrence of subsp. frigida has been recorded in Algaline phytoplankton monitoring data collected since 1993. Although it has never been responsible for high biomass blooms, it commonly occurs in spring in the Northern Baltic Proper and in the western Gulf of Finland, when the water temperatures are <5°C.  相似文献   

16.
Milbrink  Göran  Timm  Tarmo 《Hydrobiologia》2001,463(1-3):93-102
Over the last few centuries, several Ponto-Caspian tubificid oligochaetes have gradually dispersed from the Black Sea – Caspian Sea region to the north-west and west over Europe. The present world distribution comprising also the Great Lakes of North America clearly demonstrates that anthropochorous vectors of dispersal are involved. Passive transportation in the ballast water of ships has radically changed the possibilities of dispersal for many invertebrate species and has even made dispersal between continents possible. The construction of navigable canals has furthermore facilitated the crossing of watersheds and continents. Other likely vectors of longway dispersal for oligochaetes, as well as for other small-size aquatic invertebrates, are birds and mammals. The dispersal of the Potamothrixspecies is likely to have taken place in successive waves (three) with front-lines still on the move from the east to the west over the Baltic States and Scandinavia. The rheophilous species Potamothrix moldaviensishas presently reached – apart from the large rivers of Russia and many Central-European water bodies – also the Baltic States and south-eastern Sweden. Trajectories of dispersal demonstrate routes across the Baltic Sea – via the ballast water of ships. In the largest rivers of the Eastern Baltic Region (Neva, Daugava, Nemunas), downstream dispersal is the most likely way of transportation. P. moldaviensis together with P. heuscheri(second wave) and P. vejdovskyi(third wave) are presently forming front-lines running obliquely from the north-east to the south-west over south Sweden. In mesotrophic-eutrophic basins of eastern Lake Mälaren, the abundance as well as the species diversity of oligochaetes is particularly high wherever Ponto-Caspian Potamothrixspecies – often several species together – are involved.  相似文献   

17.
Vannella simplex (Gymnamoebia, Vannellidae) is one of the most common amoebae species, recorded from a variety of regions. It was originally described as a freshwater species, but has also been reported from shallow-water regions of the Baltic Sea. In the present work, we investigated the morphology and biology of three V. simplex isolates, originating from geographically distant regions. Among them is one brackish water strain, isolated from artificial cyanobacterial mats, which were originally sampled in Nivå Bay (Baltic Sea, The Sound). The strain is cyst-forming and can thrive at salinity ranges from 0–50 ppt. Phylogenetic relationships were investigated by sequencing partial SSU rDNA of the cultured V. simplex isolates. Additional sequences were obtained from four environmental DNA extractions of sediment samples collected from different localities in Switzerland. Analysis of all obtained sequences revealed a monophyletic group. Based on the analysis and comparison of morphological, ecological and molecular data sets we compiled a distribution map of V. simplex and propose an emendation of this species.  相似文献   

18.
Hydrodynamic drift modeling was used to investigate the potential dispersion of Mnemiopsis leidyi from the Bornholm Basin in the Baltic Sea where it has been observed since 2007 further to the east and north. In the brackish surface layer dispersion is mainly driven by wind, while within the halocline dispersion is mainly controlled by the baroclinic flow field and bottom topography. Model runs showed that the natural spreading via deep water currents from the Bornholm Basin towards north and east is limited by topographic features and low advection velocities. Based on the information on ranges of salinity and temperature, which limit survival and reproduction of this ctenophore within the Baltic Sea, areas have been identified where the American comb jelly, M. leidyi could potentially survive and reproduce. While, we could show that M. leidyi might survive in vast areas of the northern Baltic Sea its reproduction is prevented by low salinity (<10 psu) and temperature (<12°C). Thus, due to the combined effect of low salinity and temperature, it is not probable that M. leidyi could establish permanent populations in the central or northern Baltic Sea. However, it seems that in the southern parts of the Baltic Sea environmental conditions are suitable for a successful reproduction of M. leidyi.  相似文献   

19.
Colony-forming cyanobacteria of the genus Aphanizomenon form massive blooms in the brackish water of the Baltic Sea during the warmest summer months. There have been recent suggestions claiming that the Baltic Sea Aphanizomenon species may be different from Aphanizomenon flos-aquae found in lakes. In this study, we examined variability in the morphology and 16S-23S rRNA internal transcribed spacer (ITS) sequences of A. flos-aquae populations along a salinity gradient from a string of lakes to a fjord-like extension of the Baltic Sea to the open Baltic Sea. Morphological differences among the populations were negligible. We found that the Baltic Sea was dominated (25 out of 27 sequences) by one ITS1-S (shorter band of ITS 1 [ITS1]) genotype, which also was found in the lakes. The lake populations of A. flos-aquae tended to be genetically more diverse than the Baltic Sea populations. Since the lake ITS1-S genotypes of A. flos-aquae are continuously introduced to the Baltic Sea via inflowing waters, it seems that only one ITS1 genotype is able to persist in the Baltic Sea populations. The results suggest that one of the ITS1-S genotypes found in the lakes is better adapted to the conditions of the Baltic Sea and that natural selection removes most of the lake genotypes from the Baltic Sea A. flos-aquae populations.  相似文献   

20.
Possible reproductive isolation between freshwater and brackish water populations of the dioecious charophyte Chara aspera was studied by means of cross-fertilization experiments and AFLP (Amplified Fragment Length Polymorphism). Three Swedish freshwater populations and three (German and Swedish) Baltic Sea populations of C. aspera were sampled. Cross-fertilization experiments were performed in a full combination setup of all populations and with two different salinities (0 and 10 PSU). Both freshwater and brackish water females formed about 70% more gametangia at 0 than at 10 PSU. Male individuals collected from freshwater had higher fertility than brackish water males at both salinities. 57% of all gametangia of females from freshwater developed into oospores compared to only 8% of gametangia of brackish water females. 42% of all oospores were fertilized in crosses between habitats (freshwater–brackish water) compared to 36% in crosses within habitats, the difference was not significant.Oospore and bulbil germination was investigated using propagules from freshwater and brackish water populations and incubation salinities of 0, 5, 10 and 20 PSU. None of the oospores collected from brackish water germinated. Germination of oospores and bulbils from freshwater was higher at 0 and 5 PSU than at higher salinities. Only around 40% of bulbils from brackish water germinated at 20 PSU compared to around 70% at the other three salinities. Germination of all bulbils was delayed at 20 PSU compared to other salinities.Genetic similarities (Jaccard indices of AFLP data) were higher within than between populations, but comparisons within habitat (freshwater–freshwater and brackish water–brackish water) were not different from comparisons between habitats.Our results did not identify any reproductive isolation between freshwater and brackish water populations, but indicate low gene flow between the two habitats. Oospore and bulbil germination success were highest at salinities corresponding to the conditions of their original habitat, suggesting genetic adaptation to their environmental conditions and indicating that propagules transported from freshwater to brackish water or vice versa will hardly develop into fertile plants. Additionally, brackish water plants perform poorer in all aspects of sexual reproduction than freshwater plants. Possibly, successful dispersal of oospores is not subjected to high selective pressure within the Baltic Sea where new sites easily can be colonized by means of vegetative reproduction. We assume that these adaptations will favour speciation within C. aspera and support the idea of the geologically young Baltic Sea as a “cradle of plant evolution”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号