首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetraalkylammonium (TAA) salts are well known reversible inhibitors of cholinesterases. However, at concentrations around 10 mm, they have been found to activate the hydrolysis of positively charged substrates, catalyzed by wild-type human butyrylcholinesterase (EC 3.1.1.8) [Erdoes, E.G., Foldes, F.F., Zsigmond, E.K., Baart, N. & Zwartz, J.A. (1958) Science 128, 92]. The present study was undertaken to determine whether the peripheral anionic site (PAS) of human BuChE (Y332, D70) and/or the catalytic substrate binding site (CS) (W82, A328) are involved in this phenomenon. For this purpose, the kinetics of butyrylthiocholine (BTC) hydrolysis by wild-type human BuChE, by selected mutants and by horse BuChE was carried out at 25 degreeC and pH 7.0 in the presence of tetraethylammonium (TEA). It appears that human enzymes with more intact structure of the PAS show more prominent activation phenomenon. The following explanation has been put forward: TEA competes with the substrate at the peripheral site thus inhibiting the substrate hydrolysis at the CS. As the inhibition by TEA is less effective than the substrate inhibition itself, it mimics activation. At the concentrations around 40 mm, well within the range of TEA competition at both substrate binding sites, it lowers the activity of all tested enzymes.  相似文献   

2.
The peripheral anionic site (PAS) of human butyrylcholinesterase is involved in the mechanism of substrate activation by positively charged substrates and ligands. Two substrate binding loci, D70 in the PAS and W82 in the active site, are connected by the Omega loop. To determine whether the Omega loop plays a role in the signal transduction between the PAS and the active site, residues involved in stabilization of the loop, N83, K339 and W430, were mutated. Mutations N83A and N83Q caused loss of substrate activation, suggesting that N83 which interacts with the D70 backbone may be an element of the transducing system. The K339M and W430A mutant enzymes retained substrate activation. Residues W82, E197, and A328 in the active site gorge have been reported to be involved in substrate activation. At butyrylthiocholine concentrations greater then 2 mM, W82A showed apparent substrate activation. Mutations E197Q and E197G strongly reduced substrate activation, while mutation E197D caused a moderate effect, suggesting that the carboxylate of residue E197 is involved in substrate activation. Mutations A328F and A328Y showed no substrate activation, whereas A328G retained substrate activation. Substrate activation can result from an allosteric effect due to binding of the second substrate molecule on the PAS. Mutation W430A was of special interest because this residue hydrogen bonds to W82 and Y332. W430A had strongly reduced affinity for tetramethylammonium. The bimolecular rate constant for reaction with diisopropyl fluorophosphate was reduced 10000-fold, indicating severe alteration in the binding area in W430A. The kcat values for butyrylthiocholine, o-nitrophenyl butyrate, and succinyldithiocholine were lower. This suggested that the mutation had caused misfolding of the active site gorge without altering the Omega loop conformation/dynamics. W430 as well as W231 and W82 appear to form the wall of the active site gorge. Mutation of any of these tryptophans disrupts the architecture of the active site.  相似文献   

3.
The peripheral anionic site (PAS) of human butyrylcholinesterase is involved in the mechanism of substrate activation by positively charged substrates and ligands. Two substrate binding loci, D70 in the PAS and W82 in the active site, are connected by the Ω loop. To determine whether the Ω loop plays a role in the signal transduction between the PAS and the active site, residues involved in stabilization of the loop, N83, K339 and W430, were mutated. Mutations N83A and N83Q caused loss of substrate activation, suggesting that N83 which interacts with the D70 backbone may be an element of the transducing system. The K339M and W430A mutant enzymes retained substrate activation. Residues W82, E197, and A328 in the active site gorge have been reported to be involved in substrate activation. At butyrylthiocholine concentrations greater then 2 mM, W82A showed apparent substrate activation. Mutations E197Q and E197G strongly reduced substrate activation, while mutation E197D caused a moderate effect, suggesting that the carboxylate of residue E197 is involved in substrate activation. Mutations A328F and A328Y showed no substrate activation, whereas A328G retained substrate activation. Substrate activation can result from an allosteric effect due to binding of the second substrate molecule on the PAS. Mutation W430A was of special interest because this residue hydrogen bonds to W82 and Y332. W430A had strongly reduced affinity for tetramethylammonium. The bimolecular rate constant for reaction with diisopropyl fluorophosphate was reduced 10 000-fold, indicating severe alteration in the binding area in W430A. The kcat values for butyrylthiocholine, o-nitrophenyl butyrate, and succinyldithiocholine were lower. This suggested that the mutation had caused misfolding of the active site gorge without altering the Ω loop conformation/dynamics. W430 as well as W231 and W82 appear to form the wall of the active site gorge. Mutation of any of these tryptophans disrupts the architecture of the active site.  相似文献   

4.
The effects of tyramine, serotonin and benzalkonium on the esterase and aryl acylamidase activities of wild-type human butyrylcholinesterase and its peripheral anionic site mutant, D70G, were investigated. The kinetic study was carried out under steady-state conditions with neutral and positively charged aryl acylamides [o-nitrophenylacetanilide, o-nitrotrifluorophenylacetanilide and m-(acetamido) N,N,N-trimethylanilinium] and homologous esters (o-nitrophenyl acetate and acetylthiocholine). Tyramine was an activator of hydrolysis for neutral substrates and an inhibitor of hydrolysis for positively charged substrates. The affinity of D70G for tyramine was lower than that of the wild-type enzyme. Tyramine activation of hydrolysis for neutral substrates by D70G was linear. Tyramine was found to be a pure competitive inhibitor of hydrolysis for positively charged substrates with both wild-type butyrylcholinesterase and D70G. Serotonin inhibited both esterase and aryl acylamidase activities for both positively charged and neutral substrates. Inhibition of wild-type butyrylcholinesterase was hyperbolic (i.e. partial) with neutral substrates and linear with positively charged substrates. Inhibition of D70G was linear with all substrates. A comparison of the effects of tyramine and serotonin on D70G versus the wild-type enzyme indicated that: (a) the peripheral anionic site is involved in the nonlinear activation and inhibition of the wild-type enzyme; and (b) in the presence of charged substrates, the ligand does not bind to the peripheral anionic site, so that ligand effects are linear, reflecting their sole interaction with the active site binding locus. Benzalkonium acted as an activator at low concentrations with neutral substrates. High concentrations of benzalkonium caused parabolic inhibition of the activity with neutral substrates for both wild-type butyrylcholinesterase and D70G, suggesting multiple binding sites. Benzalkonium caused linear, noncompetitive inhibition of the positively charged aryl acetanilide m-(acetamido) N,N,N-trimethylanilinium for D70G, and an unusual mixed-type inhibition/activation (alpha > beta > 1) for wild-type butyrylcholinesterase with this substrate. No fundamental difference was observed between the effects of ligands on the butyrylcholinesterase-catalysed hydrolysis of esters and amides. Thus, butyrylcholinesterase uses the same machinery, i.e. the catalytic triad S198/H448/E325, for the hydrolysis of both types of substrate. The differences in response to ligand binding depend on whether the substrates are neutral or positively charged, i.e. the differences depend on the function of the peripheral site in wild-type butyrylcholinesterase, or the absence of its function in the D70G mutant. The complex inhibition/activation effects of effectors, depending on the integrity of the peripheral anionic site, reflect the allosteric 'cross-talk' between the peripheral anionic site and the catalytic centre.  相似文献   

5.
Hydrolysis of the neutral substrate N-methylindoxyl acetate (NMIA) by wild-type human butyrylcholinesterase (BuChE) and peripheral site mutants (D70G, Y332A, D70G/Y332A) was found to follow the Michaelis-Menten kinetics. K(m) was 0.14 mM for wild-type, and 0.07-0.16 mM for D70G, Y332A and D70G/Y332A, indicating that the peripheral site is not involved in NMIA binding. The values of k(cat) were of the same order for all enzymes: 12,000-18,000 min(-1). Volume changes upon substrate binding (-DeltaV(K(m))) and the activation volumes (DeltaV++(k(cat)) associated with hydrolysis of NMIA were calculated from the pressure dependence of the catalytic constants. Values of -DeltaV(K(m)) indicate that NMIA binds to an aromatic residue, presumed to be W82, the active site binding locus. Binding is accompanied by a release of water molecules from the gorge. Residue 70 controls the number of water molecules that are released upon substrate binding. The values of DeltaV++(k(cat)), which are positive for wild-type and faintly positive for D70G, clearly indicate that the catalytic steps are accompanied by re-entry of water into the gorge. Results support the premise that residue D70 is involved in the conformational stabilization of the active site gorge and in control of its hydration. A slow transient, preceding the steady state, was seen on a time scale of several minutes. The induction time rapidly increased with NMIA concentration to reach a limit at substrate saturation. Much shorter induction times (<1 min) were seen for hydrolysis of benzoylcholine (BzCh) by wild-type BuChE and for hydrolysis of butyrylthiocholine (BuSCh) by the active site mutants E197Q and E197Q/G117H. This slow transient was interpreted in terms of hysteresis without kinetic cooperativity. The hysteretic behavior of BuChE results from a slow conformational equilibrium between two enzyme states E and E'. NMIA binds only to the primed form E'. Kosmotropic salts and hydrostatic pressure were found to shift the equilibrium toward E'. The E-->E' transition is accompanied by a negative activation volume (DeltaV++(0)= -45+/-10 ml/mol), and the E' form is more compact than E. Hydration water in the gorge of E' appears to be more structured than in the unprimed form.  相似文献   

6.
Catalytic parameters of human butyrylcholinesterase (BuChE) for hydrolysis of homologous pairs of oxo-esters and thio-esters were compared. Substrates were positively charged (benzoylcholine versus benzoylthiocholine) and neutral (phenylacetate versus phenylthioacetate). In addition to wild-type BuChE, enzymes containing mutations were used. Single mutants at positions: G117, a key residue in the oxyanion hole, and D70, the main component of the peripheral anionic site were tested. Double mutants containing G117H and mutations on residues of the oxyanion hole (G115, A199), or the pi-cation binding site (W82), or residue E197 that is involved in stabilization of tetrahedral intermediates were also studied. A mathematical analysis was used to compare data for BuChE-catalyzed hydrolysis of various pairs of oxo-esters and thio-esters and to determine the rate-limiting step of catalysis for each substrate. The interest and limitation of this method is discussed. Molecular docking was used to analyze how the mutations could have altered the binding of the oxo-ester or the thio-ester. Results indicate that substitution of the ethereal oxygen for sulfur in substrates may alter the adjustment of substrate in the active site and stabilization of the transition-state for acylation. This affects the k2/k3 ratio and, in turn, controls the rate-limiting step of the hydrolytic reaction. Stabilization of the transition state is modulated both by the alcohol and acyl moieties of substrate. Interaction of these groups with the ethereal hetero-atom can have a neutral, an additive or an antagonistic effect on transition state stabilization, depending on their molecular structure, size and enantiomeric configuration.  相似文献   

7.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the pi-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the pi-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

8.
Substrate inhibition is considered a defining property of acetylcholinesterase (AChE), whereas substrate activation is characteristic of butyrylcholinesterase (BuChE). To understand the mechanism of substrate inhibition, the pH dependence of acetylthiocholine hydrolysis by AChE was studied between pH 5 and 8. Wild-type human AChE and its mutants Y337G and Y337W, as well as wild-type Bungarus fasciatus AChE and its mutants Y333G, Y333A and Y333W were studied. The pH profile results were unexpected. Instead of substrate inhibition, wild-type AChE and all mutants showed substrate activation at low pH. At high pH, there was substrate inhibition for wild-type AChE and for the mutant with tryptophan in the π-cation subsite, but substrate activation for mutants containing small residues, glycine or alanine. This is particularly apparent in the B. fasciatus AChE. Thus a single amino acid substitution in the π-cation site, from the aromatic tyrosine of B. fasciatus AChE to the alanine of BuChE, caused AChE to behave like BuChE. Excess substrate binds to the peripheral anionic site (PAS) of AChE. The finding that AChE is activated by excess substrate supports the idea that binding of a second substrate molecule to the PAS induces a conformational change that reorganizes the active site.  相似文献   

9.
In spite of its broad specificity among phenols, Trametes versicolor laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.  相似文献   

10.
Dispersin B (DspB), a family 20 beta-hexosaminidase from the oral pathogen Aggregatibacter actinomycetemcomitans, cleaves beta(1,6)-linked N-acetylglucosamine polymer. In order to understand the substrate specificity of DspB, we have undertaken to characterize several conserved and nonconserved residues in the vicinity of the active site. The active sites of DspB and other family 20 hexosaminidases possess three highly conserved acidic residues, several aromatic residues and an arginine at subsite -1. These residues were mutated using site-directed mutagenesis and characterized for their enzyme activity. Our results show that a highly conserved acid pair in beta-hexosaminidases D183 and E184, and E332 play a critical role in the hydrolysis of the substrates. pH activity profile analysis showed a shift to a higher pH (6.8) in the optimal activity for the E184Q mutant, suggesting that this residue might act as the acid/base catalyst. The reduction in k(cat) observed for Y187A and Y278A mutants suggests that the Y187 residue (unique to DspB) located on a loop might play a role in substrate specificity and be a part of subsite +1, whereas the hydrogen-bond interaction between Y278A and the N-acetyl group might help to stabilize the transition state. Mutation of W237 and W330 residues abolished hydrolytic activity completely suggesting that alteration at these positions might collapse the binding pocket for the N-acetyl group. Mutation of the conserved R27 residue (to R27A or R27K) also caused significant reduction in k(cat) suggesting that R27 might be involved in stabilization of the transition state. From these results, we conclude that in DspB, and possibly in other structurally similar family 20 hydrolases, some residues at the active site assist in orienting the N-acetyl group to participate in the substrate-assisted mechanism, whereas other residues such as R27 and E332 assist in holding the terminal N-acetylglucosamine during the hydrolysis.  相似文献   

11.
Structure-function relationships of cholinesterases (CHEs) were studied by expressing site-directed and naturally occurring mutants of human butyrylcholinesterase (BCHE) in microinjected Xenopus oocytes. Site-directed mutagenesis of the conserved electronegative Glu441,Ile442,Glu443 domain to Gly441,Ile442,Gln443 drastically reduced the rate of butyrylthiocholine (BTCh) hydrolysis and caused pronounced resistance to dibucaine binding. These findings implicate the charged Glu441,Ile442,Glu443 domain as necessary for a functional CHE catalytic triad as well as for binding quinoline derivatives. Asp70 to Gly substitution characteristic of 'atypical' BCHE, failed to alter its Km towards BTCh or dibucaine binding but reduced hydrolytic activity to 25% of control. Normal hydrolytic activity was restored to Gly70 BCHE by additional His114 or Tyr561 mutations, both of which co-appear with Gly70 in natural BCHE variants, which implies a likely selection advantage for these double BCHE mutants over the single Gly70 BCHE variant. Gly70 BCHE variants also displayed lower binding as compared with Asp70 BCHE to cholinergic drugs, certain choline esters and solanidine. These effects were ameliorated in part by additional mutations or in binding solanidine complexed with sugar residues. These observations indicate that structural interactions exist between N' and C' terminal domains in CHEs which contribute to substrate and inhibitor binding and suggest a crucial involvement of both electrostatic and hydrophobic domains in the build-up of the CHE active center.  相似文献   

12.
Thrombin-activable fibrinolysis inhibitor (TAFI) is a zymogen that inhibits the amplification of plasmin production when converted to its active form (TAFIa). TAFI is structurally very similar to pancreatic procarboxypeptidase B. TAFI also shares high homology in zinc binding and catalytic sites with the second basic carboxypeptidase present in plasma, carboxypeptidase N. We investigated the effects of altering residues involved in substrate specificity to understand how they contribute to the enzymatic differences between TAFI and carboxypeptidase N. We expressed wild type TAFI and binding site mutants in 293 cells. Recombinant proteins were purified and characterized for their activation and enzymatic activity as well as functional activity. Although the thrombin/thrombomodulin complex activated all the mutants, carboxypeptidase B activity of the activated mutants against hippuryl-arginine was reduced. Potato carboxypeptidase inhibitor inhibited the residual activity of the mutants. The functional activity of the mutants in a plasma clot lysis assay correlated with their chromogenic activity. The effect of the mutations on other substrates depended on the particular mutation, with some of the mutants possessing more activity against hippuryl-His-leucine than wild type TAFIa. Thus mutations in residues around the substrate binding site of TAFI resulted in altered C-terminal substrate specificity.  相似文献   

13.
A series of mutants were constructed to investigate the amino-acid residues responsible for the synergism in substrate binding of arginine kinase (AK). AK contains a pair of highly conserved amino acids (Y75 and P272) that form a hydrogen bond. In the locust (Locusta migratoria manilensis) AK, mutants in two highly conserved sites can cause pronounced loss of activity, conformational changes and distinct substrate synergism alteration. The Y75F and Y75D mutants showed strong synergism (Kd/Km=6.2-13.4), while in single mutants, P272G and P272R, and a double mutant, Y75F/P272G, the synergism was almost completely lost (Kd/Km=1.1-1.4). Another double mutant, Y75D/P272R, had characteristics similar to those of the wild-type enzyme. All these results suggest that the amino-acid residues 75 and 272 play an important role in regulating the synergism in substrate binding of AK. Fluorescence spectra showed that all mutants except Y75D/P272R displayed a red shift to different degrees. All the results provided direct evidence that there is a subtle relationship between the synergism in substrate binding and the conformational change.  相似文献   

14.
The action of a potent tricyclic cholinesterase inhibitor ethopropazine on the hydrolysis of acetylthiocholine and butyrylthiocholine by purified horse serum butyrylcholinesterase (EC 3.1.1.8) was investigated at 25 and 37 degrees C. The enzyme activities were measured on a stopped-flow apparatus and the analysis of experimental data was done by applying a six-parameter model for substrate hydrolysis. The model, which was introduced to explain the kinetics of Drosophila melanogaster acetylcholinesterase [Stojan et al. (1998) FEBS Lett. 440, 85-88], is defined with two dissociation constants and four rate constants and can describe both cooperative phenomena, apparent activation at low substrate concentrations and substrate inhibition by excess of substrate. For the analysis of the data in the presence of ethopropazine at two temperatures, we have enlarged the reaction scheme to allow primarily its competition with the substrate at the peripheral site, but the competition at the acylation site was not excluded. The proposed reaction scheme revealed, upon analysis, competitive effects of ethopropazine at both sites; at 25 degrees C, three enzyme-inhibitor dissociation constants could be evaluated; at 37 degrees C, only two constants could be evaluated. Although the model considers both cooperative phenomena, it appears that decreased enzyme sensitivity at higher temperature, predominantly for the ligands at the peripheral binding site, makes the determination of some expected enzyme substrate and/or inhibitor complexes technically impossible. The same reason might also account for one of the paradoxes in cholinesterases: activities at 25 degrees C at low substrate concentrations are higher than at 37 degrees C. Positioning of ethopropazine in the active-site gorge by molecular dynamics simulations shows that A328, W82, D70, and Y332 amino acid residues stabilize binding of the inhibitor.  相似文献   

15.
Bambuterol is a chiral carbamate known as selective inhibitor of butyrylcholinesterase (BChE). In order to relate bambuterol selectivity and stereoselectivity of cholinesterases to the active site residues, we studied the inhibition of recombinant mouse BChE, acetylcholinesterase (AChE) and six AChE mutants, employed to mimic BChE active site residues, by bambuterol enantiomers. Both enantiomers selectively inhibited BChE about 8000 times faster than AChE. The largest inhibition rate increase in comparison to AChE w.t. was observed with the F295L/Y337A mutant, showing that leucine 295 and alanine 337 are crucial residues in BChE for high bambuterol selectivity. All studied enzymes preferred inhibition by the R- over the S-bambuterol. The enlargement of the AChE choline binding site and of the acyl pocket by single or double mutations (Y337A, F295L/Y337A and F297I/Y337A) increased, in comparison to w.t. enzymes, inhibition rate constants of R- bambuterol more than that of S- bambuterol resulting in four times higher stereoselectivity. Peripheral site mutations (Y124Q and Y72N/Y124Q/Y337A) increased inhibition rate by S- more than R-bambuterol and consequently diminished the stereoselectivity.  相似文献   

16.
The quantitative effect of a second mutation on a mutant enzyme may be antagonistic, absent, partially additive, additive, or synergistic with respect to the first mutation. Depending on which kinetic or thermodynamic parameter of an enzyme is measured, the same two mutations can interact differently in the double mutant. Additive effects of two mutations on an equilibrium constant, such as the dissociation constant of the enzyme-substrate complex (KS), occur when noninteracting residues which facilitate the same step (substrate binding) are mutated. Partially additive effects result from the cooperative interaction with the substrate of the two residues mutated, and synergistic effects result from the anticooperative interaction with the substrate of the two residues mutated. An alternative explanation for synergy is extensive unfolding of the enzyme. Antagonistic effects on an equilibrium constant such as KS result from opposing structural effects of the two mutations on substrate binding. No additional effect of the second mutation in the double mutant represents a limiting case of either partial additivity or antagonism [corrected]. The interactions of the effects of two mutations on a rate constant such as kcat have the same explanations as those given above for equilibrium constants since the binding of a rate-limiting transition state is occurring. However, due to kinetic complexity, the following exceptions and additions exist. Additive effects of two mutations on kcat occur when noninteracting residues which facilitate the same step are mutated, provided this step is rate limiting. If the affected step is not rate limiting then synergistic effects of the two mutations are observed as each mutation causes the step to become progressively more rate limiting. Additive effects on kcat also occur when the two mutations affect consecutive steps, provided one of them is rate limiting. Partially additive effects on kcat also occur when noninteracting residues facilitating consecutive, non-rate-limiting steps are mutated. These concepts, when applied to published data on double mutants of delta 5-3-ketosteroid isomerase, staphylococcal nuclease, tyrosyl-tRNA synthetase, glutathione reductase, and subtilisin, provide deeper insights into the independent, cooperative, anticooperative, or antagonistic interactions of amino acid residues in the binding of substrates, activators, and inhibitors and in promoting catalysis.  相似文献   

17.
myo-Inositol-1-phosphate synthase (mIPS) catalyzes the conversion of glucose-6-phosphate (G-6-P) to inositol-1-phosphate. In the sulfate-reducing archaeon Archaeoglobus fulgidus it is a metal-dependent thermozyme that catalyzes the first step in the biosynthetic pathway of the unusual osmolyte di-myo-inositol-1,1'-phosphate. Several site-specific mutants of the archaeal mIPS were prepared and characterized to probe the details of the catalytic mechanism that was suggested by the recently solved crystal structure and by the comparison to the yeast mIPS. Six charged residues in the active site (Asp225, Lys274, Lys278, Lys306, Asp332, and Lys367) and two noncharged residues (Asn255 and Leu257) have been changed to alanine. The charged residues are located at the active site and were proposed to play binding and/or direct catalytic roles, whereas noncharged residues are likely to be involved in proper binding of the substrate. Kinetic studies showed that only N255A retains any measurable activity, whereas two other mutants, K306A and D332A, can carry out the initial oxidation of G-6-P and reduction of NAD+ to NADH. The rest of the mutant enzymes show major changes in binding of G-6-P (monitored by the 31P line width of inorganic phosphate when G-6-P is added in the presence of EDTA) or NAD+ (detected via changes in the protein intrinsic fluorescence). Characterization of these mutants provides new twists on the catalytic mechanism previously proposed for this enzyme.  相似文献   

18.
Non-flagellar type III secretion systems (T3SSs) transport proteins across the bacterial cell and into eukaryotic cells. Targeting of proteins into host cells requires a dedicated translocation apparatus. Efficient secretion of the translocator proteins that make up this apparatus depends on molecular chaperones. Chaperones of the translocators (also called class-II chaperones) are characterized by the possession of three tandem tetratricopeptide repeats (TPRs). We wished to dissect the relations between chaperone structure and function and to validate a structural model using site-directed mutagenesis. Drawing on a number of experimental approaches and focusing on LcrH, a class-II chaperone from the Yersinia Ysc-Yop T3SS, we examined the contributions of different residues, residue classes and regions of the protein to chaperone stability, chaperone-substrate binding, substrate stability and secretion and regulation of Yop protein synthesis. We confirmed the expected role of the conserved canonical residues from the TPRs to chaperone stability and function. Eleven mutations specifically abrogated YopB binding or secretion while three mutations led to a specific loss of YopD secretion. These are the first mutations described for any class-II chaperone that allow interactions with one translocator to be dissociated from interactions with the other. Strikingly, all mutations affecting the interaction with YopB mapped to residues with side chains projecting from the inner, concave surface of the modelled TPR structure, defining a YopB interaction site. Conversely, all mutations preventing YopD secretion affect residues that lie on the outer, convex surface of the triple-TPR cluster in our model, suggesting that this region of the molecule represents a distinct interaction site for YopD. Intriguingly, one of the LcrH double mutants, Y40A/F44A, was able to maintain stable substrates inside bacteria, but unable to secrete them, suggesting that these two residues might influence delivery of substrates to the secretion apparatus.  相似文献   

19.
Site-directed mutagenesis in the active site of Thermoactinomyces vulgaris carboxypeptidase T (CpT), which is capable of hydrolyzing both hydrophobic and positively charged substrates, resulted in five mutants: CpT1 (A243G), CpT2 (D253G/T255D), CpT3 (A243G/D253G/T255D), CpT4 (G207S/A243G/D253G/T255D), and CpT5 (G207S/A243G/T250A/D253G/T255D). These mutants step-by-step reconstruct the primary specificity pocket of carboxypeptidase B (CpB), which is capable of cleaving only positively charged C-terminal residues. All of the mutants retained the substrate specificity of the wild-type CpT. Based on comparison of three-dimensional structures of CpB and the CpT5 model, it was suggested that the lower affinity of CpT5 for positively charged substrates than the affinity of CpB could be caused by differences in nature and spatial location of Leu247 and Ile247 and of His68 and Asp65 residues in CpT and CpB, respectively, and also in location of the water molecule bound with Ala250. An additional hydrophobic region was detected in the CpT active site formed by Tyr248, Leu247, Leu203, Ala243, CH3-group of Thr250, and CO-groups of Tyr248 and Ala243, which could be responsible for binding hydrophobic substrates. Thus, notwithstanding the considerable structural similarity of CpT and pancreatic carboxypeptidases, the mechanisms underlying their substrate specificities are different.  相似文献   

20.
Huang J  Lu J  Barany F  Cao W 《Biochemistry》2002,41(26):8342-8350
Endonuclease V nicks damaged DNA at the second phosphodiester bond 3' to inosine, uracil, mismatched bases, or abasic (AP) sites. Alanine scanning mutagenesis was performed in nine conserved positions of Thermotoga maritima endonuclease V to identify amino acid residues involved in recognition or endonucleolytic cleavage of these diverse substrates. Alanine substitution at D43, E89, and D110 either abolishes or substantially reduces inosine cleavage activity. These three mutants gain binding affinity for binding to double-stranded or single-stranded inosine substrates in the absence of a metal ion, suggesting that these residues may be involved in coordinating catalytic metal ion(s). Y80A, H116A, and, to a lesser extent, R88A demonstrate reduced affinities for double-stranded or single-stranded inosine substrates or nicked products. The lack of tight binding to a nicked inosine product accounts for the increased rate of turnover of inosine substrate since the product release is less rate-limiting. Y80A, R88A, and H116A fail to cleave AP site substrates. Their activities toward uracil substrates are in the following order: H116A > R88A > Y80A. These residues may play a role in substrate recognition. K139A maintains wild-type binding affinity for binding to double-stranded and single-stranded inosine substrate, but fails to cleave AP site and uracil substrate efficiently, suggesting that K139 may play a role in facilitating non-inosine substrate cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号