首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosynthetic nature of the initial stages of nitrate assimilation, namely, uptake and reduction of nitrate, has been investigated in cells of the cyanobacterium Anacystis nidulans treated with l-methionine dl-sulfoximine to prevent further assimilation of the ammonium resulting from nitrate reduction. The light-driven utilization of nitrate or nitrite by these cells results in ammonium release and is associated with concomitant oxygen evolution. Stoichiometry values of about 2 mol oxygen evolved per mol nitrate reduced to ammonium and 1.5 mol oxygen per mol nitrite have been determined in the presence of CO2, as well as in its absence, with nitrate or nitrite as the only Hill reagent. This indicates that in A. nidulans water photolysis directly provides, without the need for carbon metabolites, the reducing power required for the in vivo reduction of nitrate and nitrite to ammonium, processes which are besides strongly inhibited when the operation of the photosynthetic noncyclic electron flow is blocked. Evidence indicating the participation of concentrative transport system(s) in the uptake of nitrate and nitrite by A. nidulans is also presented. The operation of these energy-requiring systems seems to account for the sensitivity to ATP-synthesis inhibitors exhibited by nitrate and nitrite utilization in l-methionine dl-sulfoximine-treated cells. The utilization of nitrate by A. nidulans cells, concomitant with oxygen evolution, can therefore be considered as a genuinely CO2-independent photosynthetic process that makes direct use of photosynthetically generated assimilatory power.  相似文献   

2.
Nitrate Reduction and the Growth of Veillonella alcalescens   总被引:2,自引:1,他引:1       下载免费PDF全文
Veillonella alcalescens, a strict anaerobe, was found to possess a nitrate reductase system which has characteristics of both assimilatory and respiratory nitrate reduction. The nitrate reductase has been identified tentatively as a particulate enzyme which utilizes a variety of electron donors for the reduction of nitrate. By use of 15N-labeled nitrate, it was shown that under appropriate conditions nitrate nitrogen is incorporated into cell material. V. alcalescens grown on pyruvate and nitrate has a greater growth rate than cells grown on pyruvate alone. Growth can occur in a medium with hydrogen and nitrate as the sole energy source. Ammonium chloride decreases the rate of nitrate reduction but does not completely inhibit reduction or incorporation. The results suggest that nitrate assimilation and respiration are not as distinct as in some other organisms.  相似文献   

3.
(1) Under anaerobic conditions the respiratory chain in cells of Paracoccus denitrificans, from late exponential cultures grown anaerobically with nitrate as electron acceptor and succinate as carbon source, has been shown to reduce added nitrate via nitrite and nitrous oxide to nitrogen without any accumulation of these intermediates. (2) Addition of nitrous oxide to cells reducing nitrate strongly inhibited the latter reaction. The inhibition was reversed by preventing electron flow to nitrous oxide with either antimycin or acetylene. Electron flow to nitrous oxide thus resembles electron flow to oxygen in its inhibitory effect on nitrate reduction. In contrast, addition of nitrite to an anaerobic suspension of cells reducing nitrate resulted in a stimulation of nitrate reductase activity. Usually, addition of nitrite also partially overcame the inhibitory effect of nitrous oxide on nitrate reduction. The reason why added nitrous oxide, but not nitrite, inhibits nitrate reduction is suggested to be related to the higher reductase activity of the cells for nitrous oxide compared with nitrite. Explanations for the unexpected stimulation of nitrate reduction by nitrite in the presence or absence of added nitrous oxide are considered. (3) Nitrous oxide reductase was shown to be a periplasmic protein that competed with nitrite reductase for electrons from reduced cytochrome c. Added nitrous oxide strongly inhibited the reduction of added nitrite. (4) Nitrite reductase activity of cells was strongly inhibited by oxygen in the presence of physiological reductants, but nitrite reduction did occur in the presence of oxygen when isoascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine was the reductant. It is concluded that competition for available electrons by two oxidases, cytochrome aa3 and cytochrome o, severely restricted electron flow to the nitrite reductase (cytochrome cd). For this reason it is unlikely that the oxidase activity of this cytochrome is ever functional in cells. (5) The mechanism by which electron flow to oxygen or nitrous oxide inhibits nitrate reduction in cells has been investigated. It is argued that relatively small changes in the extent of reduction of ubiquinone, or of another component of the respiratory chain with similar redox potential, critically determine the capacity for reducing nitrate. The argument is based on: (i) the response of an anthroyloxystearic acid fluorescent probe that is sensitive to changes in the oxidation state of ubiquinone; (ii) consideration of the total rates of electron flow through ubiquinone both in the presence of oxygen and in the presence of nitrate under anaerobic conditions; (iii) use of relative extents of oxidation of b-type cytochromes as an indicator of ubiquinone redox state, especially the finding that b-type cytochrome of the antimycin-sensitive part of the respiratory chain is more oxidised in the presence of added nitrous oxide, which inhibits nitrate reduction, than in the presence of added nitrite which does not inhibit. Arguments against b- or c-type cytochromes themselves controlling nitrate reduction are given. (6) In principle, control on nitrate reduction could be exerted either upon electron flow or upon the movement of nitrate to the active site of its reductase. The observations that inverted membrane vesicles and detergent-treated cells reduced nitrate and oxygen simultaneously at a range of total rates of electron flow are taken to support the latter mechanism. The failure of an additional reductant, durohydroquinone, to activate nitrate reduction under aerobic conditions in the presence of succinate is also evidence that it is not an inadequate supply of electrons that prevents the functioning of nitrate reductase under aerobic conditions. (7) In inverted membrane vesicles the division of electron flow between nitrate and oxygen is determined by a competition mechanism, in contrast to cells. This change in behaviour upon converting cells to vesicles cannot be attributed to loss of cytochrome c, and therefore of oxidase activity, from the vesicles because a similar change in behaviour was seen with vesicles prepared from cells of a cytochrome c-deficient mutant.  相似文献   

4.
A study was done to relate the in vivo reduction of nitrate to nitrate uptake, nitrate accumulation, and induction of nitrate reductase activity in intact barley seedlings (Hordeum vulgare L. var. `Numar'). The characteristics of nitrate uptake in response to both time and ambient concentration of nitrate regulated reduction and accumulation. Uptake, accumulation, and in vivo reduction achieved steady state rates in 3 to 4 hours, whereas extractable (in vitro) nitrate reductase activity was still increasing at 12 hours. In vivo reduction of nitrate was better correlated exponentially than linearly over time with in vitro activity of nitrate reductase. A similar relationship occurred over increasing concentration of nitrate in the ambient solution. The results suggest that the rate of in vivo reduction of nitrate in barley seedlings may be regulated by the rate of uptake at the ambient concentrations of nitrate employed in the study.  相似文献   

5.
Pre-incubation of nitrate reductase from Sorghum seedlings with NADH increased enzyme activity by 25%. Ferricyanide had no effect. NADH protected the enzyme from inactivation during storage. Malonate inhibited in vivo nitrate reduction in Sorghum leaves by 95%. The inhibitory effect of malonate was reversed by fumarate. Sodium fluoride in the presence of phosphate also inhibited in vivo nitrate reduction by 60%. It is suggested that NADH generated via the citric acid cycle is utilized for nitrate reduction in Sorghum seedlings.  相似文献   

6.
The processes involved in nitrate metabolism in Halobacterium of the Dead Sea are part of a dissimilatory pathway operating in these bacteria. The induction of both nitrate and nitrite reductases is shown to depend on the presence of nitrate and of anaerobic conditions. The gas products of the denitrification process were identified as nitrous oxide and nitrogen. Some properties of two of the enzymes involved in this process, nitrate and nitrite reductases, are reported. It is shown that the 2 Feferredoxin, which is present in large quantities in Halobacterium of the Dead Sea, can serve as an electron donor for nitrite reduction by nitrite reductase. It is suggested that the presence of a dissimilatory pathway for the reduction of nitrate in Halobacterium of the Dead Sea can be used as a tool for its classification.  相似文献   

7.
农田和森林土壤中氧化亚氮的产生与还原   总被引:14,自引:2,他引:12  
采用土壤淤浆方法对丹麦农田和山毛榉森林土壤反硝化过程中N2O的产生与还原进行了研究。同时考察了硝酸根和铵离子对反硝化作用的影响。结果表明,森林土壤反硝化活性大于农田土壤,但农田土壤中N2O还原活性大于森林土壤,表现在农田和森林土壤中N2O/N2的产生比率分别为0.11和3.65。硝酸根和铵离子能促进两种土壤中的N2O产生,但可降低农田土壤中的N2O还原速率,与农田土壤相比,硝酸根可降低森林土壤N2  相似文献   

8.
The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome links diet and health.  相似文献   

9.
Nitrate transport system in Neurospora crassa   总被引:12,自引:4,他引:8       下载免费PDF全文
Nitrate uptake in Neurospora crassa has been investigated under various conditions of nitrogen nutrition by measuring the rate of disappearance of nitrate from the medium and by determining mycelial nitrate accumulation. The nitrate transport system is induced by either nitrate or nitrite, but is not present in mycelia grown on ammonia or Casamino Acids. The appearance of nitrate uptake activity is prevented by cycloheximide, puromycin, or 6-methyl purine. The induced nitrate transport system displays a Km for nitrate of 0.25 mM. Nitrate uptake is inhibited by metabolic poisons such as 2,4-dinitrophenol, cyanide, and antimycin A. Furthermore, mycelia can concentrate nitrate 50-fold. Ammonia and nitrite are non-competitive inhibitors with respect to nitrate, with Ki values of 0.13 and 0.17 mM, respectively. Ammonia does not repress the formation of the nitrate transport system. In contrast, the nitrate uptake system is repressed by Casamino Acids. All amino acids individually prevent nitrate accumulation, with the exception of methionine, glutamine, and alanine. The influence of nitrate reduction and the nitrate reductase protein on nitrate transport was investigated in wild-type Neurospora lacking a functional nitrate reductase and in nitrate non-utilizing mutants, nit-1, nit-2, and nit-3. These mycelia contain an inducible nitrate transport system which displays the same characteristics as those found in the wild-type mycelia having the functional nitrate reductase. These findings suggest that nitrate transport is not dependent upon nitrate reduction and that these two processes are separate events in the assimilation of nitrate.  相似文献   

10.
Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate-grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high-affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.  相似文献   

11.
From the second-highest dilution in a most-probable-number dilution series with lactate and sulfate as substrates and rice paddy soil as the inoculum, a strain of Desulfovibrio desulfuricans was isolated. In addition to reducing sulfate, sulfite, and thiosulfate, the strain also reduced nitrate to ammonia. The latter process was studied in detail, since the ability to reduce nitrate was strongly influenced by the presence of sulfide. Sulfide inhibited both growth on nitrate and nitrate reduction. A 70% inhibition of the nitrate reduction rate was obtained at 127 μM sulfide, and growth was inhibited by 50% at approximately 320 μM sulfide and was not detectable above 700 μM sulfide. In contrast, sulfate reduction was not affected at concentrations of up to 5 mM. After growth with sulfate, an induction period of 2 to 4 days was needed before nitrate reduction started. When nitrate and sulfate were present simultaneously, only sulfate was reduced, except when sulfate was present at very low concentrations (4 μM). At higher sulfate concentrations (500 μM), nitrate reduction was temporarily halted. The affinity for nitrate uptake was extremely high (Km = 0.05 μM) compared with that for sulfate uptake (Km = 5 μM). Thus, at low nitrate concentrations this bacterium is favored relative to denitrifiers (Km = 1.8 to 13.7 μM) or other nitrate ammonifiers (e.g., Clostridium spp. [Km = 500 μM]).  相似文献   

12.
Susceptible corn tissues exposed to the host-specific toxin of Helminthosporium carbonum race 1 reduced more nitrate to nitrite than did control tissues, as measured by an in vivo method. There were no differences in nitrate reductase activities extracted from treated and control tissues and assayed by an in vitro method. Toxin-treated susceptible roots removed nitrate from solution and accumulated it in the tissues twice as fast as did control roots. Uptake by resistant roots was stimulated also, provided approximately 100 times higher concentrations of toxin were used. Toxin-stimulated nitrate uptake occurred in the presence of tungstate, which eliminates nitrate reductase activity. Toxin did not cause leakage of nitrate from roots under these conditions. Thus, toxin-enhanced nitrate accumulation was caused by increased nitrate uptake rather than by decreased nitrate metabolism or decreased nitrate leakage. The data indicate that toxin increases the rate of nitrate reduction in vivo by increasing the availability of substrate, not by stimulation of enzyme synthesis.  相似文献   

13.
Roots of decapitated maize seedlings (Zea mays L.) were exposed for 12 hours to 1.0 millimolar KNO3 (98.5 atom per cent 15N) in the presence and absence (control) of 0.1 millimolar p-fluorophenylalanine (FPA), an analog of the amino acid phenylalanine. FPA decreased nitrate uptake but had little effect on potassium uptake. In contrast, accumulation of both ions in the xylem exudate was greatly restricted. The proportion of reduced 15N-nitrogen that was translocated at each time was also restricted by FPA. These observations are interpreted as indicating that synthesis of functional protein(s) is required for nitrate uptake and for transport of potassium, nitrate, and reduced-15N from xylem parenchyma cells into xylem elements. The effect of FPA on nitrate reduction is less clear. Initially, FPA limited nitrate reduction more than nitrate uptake, but by 8 hours the cumulative reduction of entering nitrate was similar (~35%) in both control and FPA-treated roots. A relationship between nitrate uptake and nitrate reduction is implied. It is suggested that nitrate influx regulates the proportion of nitrate reductase in the active state, and thereby regulates concurrent nitrate reduction in decapitated maize seedlings.  相似文献   

14.
Chen CL  Sung JM 《Plant physiology》1983,73(4):1065-1066
The effects of water stress on nitrate reductase and nitrite reductase activities in symbiotic nodules were examined in field-grown soybean plants (Glycine max L Merr. cv Clark). The in vitro assays of enzyme activity indicated that the nodule cytosol and bacteroids contained both nitrate reductase and nitrite reductase activities. The reduction of nitrate in bacteroids increased significantly as nodule water potential declined from −0.6 to −1.4 megapascals, and then decreased when −1.8 megapascals water potential was reached. On the contrary, the reduction of nitrate in nodule cytosol was inhibited as water stress progressed. Increases in water stress intensity also caused a significant inhibition in nitrite reductase activities of bacteroids and nodule cytosol within soybean nodules. The results show that nitrate reduction occurred both in the cytosol and bacteroids of water-stressed soybean nodules. The reduction of nitrate functioned at different physiological modes in these two fractions.  相似文献   

15.
The kinetics of denitrification and the causes of nitrite and nitrous oxide accumulation were examined in resting cell suspensions of three denitrifiers. An Alcaligenes species and a Pseudomonas fluorescens isolate characteristically accumulated nitrite when reducing nitrate; a Flavobacterium isolate did not. Nitrate did not inhibit nitrite reduction in cultures grown with tungstate to prevent formation of an active nitrate reductase; rather, accumulation of nitrite seemed to depend on the relative rates of nitrate and nitrite reduction. Each isolate rapidly reduced nitrous oxide even when nitrate or nitrite had been included in the incubation mixture. Nitrate also did not inhibit nitrous oxide reduction in Alcaligenes odorans, an organism incapable of nitrate reduction. Thus, added nitrate or nitrite does not always cause nitrous oxide accumulation, as has often been reported for denitrifying soils. All strains produced small amounts of nitric oxide during denitrification in a pattern suggesting that nitric oxide was also under kinetic control similar to that of nitrite and nitrous oxide. Apparent Km values for nitrate and nitrite reduction were 15 μM or less for each isolate. The Km value for nitrous oxide reduction by Flavobacterium sp. was 0.5 μM. Numerical solutions to a mathematical model of denitrification based on Michaelis-Menten kinetics showed that differences in reduction rates of the nitrogenous compounds were sufficient to account for the observed patterns of nitrite, nitric oxide, and nitrous oxide accumulation. Addition of oxygen inhibited gas production from 13NO3 by Alcaligenes sp. and P. fluorescens, but it did not reduce gas production by Flavobacterium sp. However, all three isolates produced higher ratios of nitrous oxide to dinitrogen as the oxygen tension increased. Inclusion of oxygen in the model as a nonspecific inhibitor of each step in denitrification resulted in decreased gas production but increased ratios of nitrous oxide to dinitrogen, as observed experimentally. The simplicity of this kinetic model of denitrification and its ability to unify disparate observations should make the model a useful guide in research on the physiology of denitrifier response to environmental effectors.  相似文献   

16.
Nitrate Reductase and Chlorate Toxicity in Chlorella vulgaris Beijerinck   总被引:3,自引:3,他引:0  
A study of the growth-inhibiting effect of chlorate on the Berlin strain of Chlorella vulgaris Beijerinck provided complete confirmation of the theory of chlorate toxicity first proposed by Åberg in 1947. Chlorate was toxic to the cells growing on nitrate, and relatively nontoxic to the cells growing on ammonium. The latter cells contained only 0.01 as much NADH-nitrate reductase as the nitrate-grown cells. Chlorate could substitute for nitrate as a substrate of the purified nitrate reductase with Km = 1.2 mm, and Vmax = 0.9Vmax for nitrate. Bromate, and to a much smaller extent, iodate, also served as alternate substrates. Nitrate is a reversible competitive inhibitor of chlorate reduction, which accounts for the partial reversal, by high nitrate concentrations, of the observed inhibition of cell growth by chlorate. During the reduction of chlorate by NADH in the presence of purified nitrate reductase, there was a progressive, irreversible inhibition of the enzyme activity, presumably brought about by the reduction product, chlorite. Both the NADH-nitrate reductase activity and the associated NADH-cytochrome c reductase activity were inactivated to the same extent by added chlorite. The spectral properties of the cytochrome b557 associated with the purified enzyme were not affected by chlorite. The inactivation of the nitrate reductase by chlorite could account for the toxicity of chlorate to cells grown on nitrate, though the destruction of other cell components by chlorite or its decomposition products cannot be excluded.  相似文献   

17.
The localization of enzymes responsible for nitrate assimilation and the generation of NADH for nitrate reduction were studied in corn (Zea mays L.) leaf blades. The techniques used effectively separated mesophyll and bundle sheath cells as judged by microscopic observations, enzymic assays, chlorophyll a/b ratios and photochemical activities. Nitrate reductase, nitrite reductase, and the nitrate content of leaf blades were localized primarily in the mesophyll cells, although some nitrite reductase was found in the bundle sheath cells. Glutamine synthetase, NAD-malate dehydrogenase, NAD-glyceraldehyde-3-phosphate dehydrogenase, and NADP-glutamate dehydrogenase were found in both types of cells, however, more NADP-glutamate dehydrogenase was found in the bundle sheath cells than in the mesophyll cells. These data indicate that the mesophyll cells are the major site for nitrate assimilation in the leaf blade because they contained an ample supply of nitrate and the enzymes considered essential for the assimilation of nitrate into amino acids. Because the specific activity of nitrate reductase was severalfold lower than the other enzymes involved in nitrate assimilation, nitrate reduction is indicated as the rate-limiting step in situ. A sequence of reactions is proposed for nitrate assimilation in the mesophyll cells of corn leaves as related to the C-4 pathway of photosynthesis.  相似文献   

18.
19.
  1. The disappearance of nitrate from suspensions of intact, washed cells of Rhodopseudomonas capsulata strain N22DNAR+ was measured with an ion selective electrode. In samples taken from phototrophic cultures grown to late exponential phase, nitrate disappearance was partially inhibited by light but was not affected by the presence of ammonium. Nitrate disappearance from samples from low density cultures in the early exponential phase of growth was first inhibited and later stimulated by light. In these cells ammonium ions inhibited the light-dependent but not the dark disappearance of nitrate. It is concluded that cells in the early exponential phase of growth possess both an ammonium-sensitive, assimilatory pathway for nitrate reduction (NRI) and an ammonium-insensitive pathway for nitrate reduction (NRII) which is linked to respiratory electron flow and energy conservation. In cells harvested in late exponential phase only the respiratory pathway for pitrate reduction is detectable.
  2. Nitrate reduction, as judged by the oxidation of reduced methyl viologen by anaerobic cell suspensions, was measured at high rates in those strains of R. capsulata (AD2, BK5, N22DNAR+) which are believed to possess NRII activity but not in those strains (Kbl, R3, N22) which only manifest the ammonium-sensitive NRI pathway. On this basis we have used nitrate-dependent oxidation of reduced methyl viologen as a diagnostic test for the nitrate reductase of NRII in cells harvested from cultures of R. capsulata strain AD2. The activity was readily detectable in cells from cultures grown aerobically in the dark with ammonium nitrate as source of nitrogen. When the oxygen supply to the culture was withdrawn, the level of methyl viologen-dependent nitrate reductase increased considerably and nitrite accumulated in the culture medium. Upon reconnecting the oxygen supply, methyl viologen-dependent nitrate reductase activity decreased and the reduction of nitrate to nitrite in the culture was inhibited. It is concluded that the respiratory nitrate reductase activity is regulated by the availability of electron transport pathways that are linked to the generation of a proton electrochemical gradient.
  相似文献   

20.
《Fungal biology》2021,125(10):764-775
Ustilago maydis can utilize nitrate as a sole source of nitrogen. This process is initiated by transporting nitrate from the extracellular environment into the cell by a nitrate transporter and followed by a two-step reduction of nitrate to ammonium via nitrate reductase and nitrite reductase enzymes, respectively. Here, we characterize the genes encoding nitrate transporter, um03849 and nitrite reductase, um03848 in U. maydis based on their roles in mating and virulence. The deletion mutants for um03848, um03849 or both genes were constructed in mating compatible haploid strains 1/2 and 2/9. In addition, CRISPR-Cas9 gene editing technique was used for um03849 gene to create INDEL mutations in U. maydis mating strains. For all the mutants, phenotypes such as growth ability, mating efficiency and pathogenesis were examined. The growth of all the mutants was diminished when grown in a medium with nitrate as the source of nitrogen. Although no clear effects on haploid filamentation or mating were observed for either single mutant, double Δum03848 Δum03849 mutants showed reduction in mating, but increased filamentation on low ammonium, particularly in the 1/2 background. With respect to pathogenesis on the host, all the mutants showed reduced degrees of disease symptoms. Further, when the deletion mutants were paired with wild type of opposite mating-type, reduced virulence was observed, in a manner specific to the genetic background of the mutant's progenitor. This background specific reduction of plant pathogenicity was correlated with differential expression of genes for the mating program in U. maydis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号