首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phomenoic acid and phomenolactone, previously isolated from the fungus Phoma lingam (Tode) Desm., have shown moderate antifungal and antibacterial properties in vitro. To rationalize the production of phomenoic acid, a kinetic study of its biosynthesis in the mycelium was performed. Phomenoic acid and phomenolactone appear in the mycelium after a prolonged incubation, a phenomenon which may be of particular interest for the production of these substances or in the study of the mechanism of their biosynthesis. The isolation procedure was optimized for phomenoic acid. Through a series of SiO2 column chromatographies, high-pressure liquid chromatography, and transformation of the mixture of phomenoic acid and phomenolactone into methyl phomenoate (BF3), the final yield of phomenoic acid reached 160 mg/liter of culture medium. An alternative method for the isolation of both phomenoic acid and phomenolactone is also reported in detail.  相似文献   

2.
《Phytochemistry》1986,25(2):531-532
The structure of phomenolactone, an antifungal substance isolated from the fungus Phoma lingam was established by reaction of phomenoic acid with dipyrridyl 2,2′-isulphide in the presence of triphenylphosphine (yield 90%). Anhydrophomenolactone is obtained as a secondary product during this synthesis in a yield of 10%.  相似文献   

3.
Jasmonic acid is a native plant growth regulator produced by algae, microorganisms and higher plants. This regulator is involved in the activation of defence mechanisms against pathogens and wounding in plants. Studies concerning the effects of carbon: nitrogen ratio (C/Nr: 17, 35 and 70), type of inoculum (spores or mycelium) and the yeast extract addition in the media on jasmonic acid production by Botryodiplodia theobromae were evaluated. Jasmonic acid production was stimulated at the carbon: nitrogen ratio of 17. Jasmonic acid productivity was higher in the media inoculated with mycelium and in the media with yeast extract 1.7 and 1.3 times, respectively.  相似文献   

4.
The continuous itaconic acid production from sucrose with Aspergillus terreus TKK 200-5-3 mycelium immobilized on polyurethane foam cubes was optimized in column bioreactors using statistical experimental design and empirical modelling. The highest itaconic acid product concentration calculated on the basis of the obtained model was 15.8 g l-1 in the investigated experimental area, when sucrose concentration was 13.5%, aeration rate 150 ml min-1 and residence time 178 h. From sucrose with immobilized A. terreus TKK 200-5-3 mycelium itaconic acid production was stable for at least 4.5 months in continuous column bioreactors. In comparison, using glucose as substrate and immobilized A. terreus TKK 200-5-1 mycelium as biocatalyst similar stability was obtained with higher product concentration. The omission of copper sulphate from the production medium gave the highest itaconic acid product concentration (26 g l-1) from 9% glucose with 0.25% ammonium nitrate and 0.095% magnesium sulphate.  相似文献   

5.
Many characteristics of fungal hydrophobins, such as an ability to change hydrophobicity of different surfaces, have potential for several applications. The large-scale processes of production and isolation of these proteins susceptible to aggregation and attachment to interfacial surfaces still needs to be studied. We report for the first time on a method for a gram-scale production and purification of a hydrophobin, HFBI of Trichoderma reesei. A high production level of the class II hydrophobin (0.6 g l(-1)) was obtained by constructing a T. reesei HFBI-overproducing strain containing three copies of the hfb1 gene. The strain was cultivated on glucose-containing medium, which induces expression of hfb1. HFBI hydrophobin was purified from the cell walls of the fungus because most of the HFBI was cell-bound (80%). Purification was carried out with a simple three-step method involving extraction of the mycelium with 1% SDS at pH 9.0, followed by KCl precipitation to remove SDS, and hydrophobic interaction chromatography. The yield was 1.8 g HFBI from mycelium (419 g dw), derived from 15 l of culture. HFBI was shown to be rather unstable to N-terminal asparagine deamidation and also, to some extent, to non-specific proteases although its thermostability was excellent.  相似文献   

6.
A study is made on a strain of higher basydiomycete Flammulia velutipes (Fr.) P. Karat. The conditions of maximum biomass production by Flammulia velutipes were studied. Soluble and insoluble fractions were isolated from mycelium. The composition of cultured mycelium and aqueous extracts from mycelium were investigated. These objects mainly contained carbohydrates (65.3 and 84.0% in insoluble and soluble fractions, respectively, and 56% mycelium), proteins (7.5-10.0% in fractions and 17.5% in mycelium), as well as an insignificant amount of mineral substances. The main carbohydrate component of fractions was glucose (53.6-78.8%); galactose and mannose were also present, as well as fucose and xylose in insignificant amounts. The aqueous extracts from mycelium demonstrated immunomodulating activity. They rendered a stimulating effect on the functional activity of macrophages--central cells of the reticluoendothelial system. The soluble fraction had a more pronounced effect than the insoluble fraction.  相似文献   

7.
Effect of fatty acids on aflatoxin production byAspergillus parasiticus   总被引:1,自引:0,他引:1  
The effect of saturated and unsaturated fatty acids on aflatoxin production was studied in a synthetic medium. The aflatoxin production decreased (10-75%) in the presence of lauric acid and palmitic acid but the addition of behenic and sebacic acid stimulated aflatoxin production by 125-541%. Linolenic and linoleic acids effected aflatoxin production and mycelium growth. An 34-fold increase in aflatoxin production was observed with 50 mM linoleic acid. An inverse relationship was observed between aflatoxin production and mycelium mass, irrespective of the nature of the fatty acid.  相似文献   

8.
Penicillium chrysogenum was immobilized in polyacrylamide gel prepared from 5% acrylamide monomers (85% acrylamide and 15% N,N'-methylene bisacrylamide). Penicillin produced from glucose by the immobilized mycelium was 17% of that produced by washed mycelium. However, the activity of penicillin production of the washed mycelium decreased with repeated use. On the other hand, the activity of the immobilized mycelium increased initially and decreased gradually with repeated use. The rate of oxygen uptake of the immobilized mycelium was about 30% of that of the washed mycelium. The immobilized mycelium required oxygen for the production of penicillin.  相似文献   

9.
Ursodeoxycholic acid dissolves cholesterol gallstones in humans. In the present study optimum conditions for ursodeoxycholic acid production by Fusarium equiseti M41 were studied. Resting mycelia of F. equiseti M41 showed maximum conversion at 28 degrees C, pH 8.0, and dissolved oxygen tension of higher than 60% saturation. Monovalent cations, such as Na+, K+, and Rb+, stimulated the conversion rate more than twofold. In the presence of 0.5 M KCl, the initial uptake rate and equilibrium concentration of lithocholic acid (substrate) were enhanced by 5.7- and 1.7-fold, respectively. We confirmed that enzyme activity catalyzing 7 beta-hydroxylation of lithocholic acid was induced by substrate lithocholic acid. The activity in the mycelium was controlled by dissolved oxygen tension during cultivation: with a dissolved oxygen tension of 15% and over, the activity peak appeared at 25 h of cultivation, whereas the peak was delayed to 34 and 50 h with 5 and 0% dissolved oxygen tension, respectively. After reaching the maximum, the 7 beta-hydroxylation activity in the mycelium declined rapidly at pH 7.0, but the decline was retarded by increasing the pH to 8.0. Several combinations of operations, such as pH shift (from pH 7 to 8), addition of 0.5 M KCl, and dissolved oxygen control, were applied to the production of ursodeoxycholic acid in a jar fermentor, and a much larger amount of ursodeoxycholic acid (1.2 g/liter) was produced within 96 h of cultivation.  相似文献   

10.
Submerged cultures of Ganoderma lucidum are used to produce fungal mycelium, which is used as a functional food and in the production of various triterpenoids, including ganoderic acids (GAs). Specific culture approaches that produce fungal mycelium with high levels of GAs and good biological activity are critical in the functional food industry. In this study, a solid-medium culture approach to producing mycelium was compared to the submerged culture system. Production of GAs, biomass, intracellular polysaccharides, and cytotoxicity of the cultured mycelium were compared as between solid and submerged culture. Growing G. lucidum strains on solid potato dextrose agar medium increased biomass, the production of ganoderic acid 24 (lanosta-7,9(11), 24-trien-3α-o1-26-oic acid), GAs, and total intracellular polysaccharides as compared to fungi grown in submerged culture. Triterpenoid-enriched methanol extracts of mycelium from solid-medium culture showed higher cytotoxicity than those from submerged culture. The IC(50) values of methanol extracts from solid-medium culture were 11.5, 8.6, and 9.9 times less than submerged culture on human lung cancer cells CH27, melanoma cells M21, and oral cancer cells HSC-3 respectively. The squalene synthase and lanosterol synthase coding genes had higher expression on the culture of solid potato dextrose medium. This is the first report that solid-medium culture is able to increase GA production significantly as compared to submerged culture and, in the process, produces much higher biological activity. This indicates that it may be possible to enhance the production of GAs by implementing mycelium culture on solid medium.  相似文献   

11.
The lipid composition of the mycelium and sclerotia ofPhymatotrichum omnivorum was compared. The lipids of the mycelium contained 47.9 % polar lipids as compared to 21.4 % in the sclerotia. Sterols represented 10 % of the lipids in sclerotia as contrasted to 3.6 % of the mycelium. More monoglycerides (17.5 %) were detected in the sclerotia as compared to the mycelium (1.6 %). Fatty acid analysis indicated that linoleic acid was the predominant fatty acid in the total fatty acids fraction in both the mycelium and the sclerotia. Palmitic acid was the major free fatty acid in the mycelium, whereas myristic acid was the predominant free fatty acid in the sclerotia. In the fatty acids of the diglycerides of sclerotia, palmitic acid represented 71 % of that fraction, as compared to 6.6 % of the fatty acids of the diglycerides in the mycelium. The major fatty acid in the diglycerides of the mycelium was oleic acid.  相似文献   

12.
A study is made on a strain of higher basydiomycete Flammulia velutipes (Fr.) P. Karst. The conditions of maximum biomass production by Flammulia velutipes were studied. Soluble and insoluble fractions were isolated from mycelium. The composition of cultured mycelium and aqueous extracts from mycelium were investigated. These objects mainly contained carbohydrates (65.3 and 84.0% in insoluble and soluble fractions, respectively, and 56% mycelium), proteins (7.5–10.0% in fractions and 17.5% in mycelium), as well as an insignificant amount of mineral substances. The main carbohydrate component of fractions was glucose (53.6–78.8%); galactose and mannose were also present, as well as fucose and xylose in insignificant amounts. The aqueous extracts from mycelium demonstrated immunomodulating activity. They rendered a stimulating effect on the functional activity of macrophages—central cells of the reticluoendothelial system. The soluble fraction had a more pronounced effect than the insoluble fraction.  相似文献   

13.
A convenient procedure consisting of UV photography (K. Yabe, Y. Ando, M. Ito, and N. Terakado, Appl. Environ. Microbiol. 53:230-234, 1987) and a tip culture method has been devised for the isolation and characterization of Aspergillus parasiticus mutants relating to aflatoxin production. With the latter procedure, the production of aflatoxins excreted into the culture medium and precursors in the mycelium were easily measured quantitatively or semiquantitatively. A total of 38 mutants in which the aflatoxigenicity was decreased or lost were obtained by UV radiation; 3 were found to be blocked mutants, which accumulated the aflatoxin precursors versicolorin A or averantin.  相似文献   

14.
Pseudomonas fluorescens DR54 showed antagonistic properties against plant pathogenic Pythium ultimum and Rhizoctonia solani both in vitro and in planta. Antifungal activity was extractable from spent growth media, and fractionation by semi-preparative HPLC resulted in isolation of an active compound, which was identified as a new bacterial cyclic lipodepsipeptide, viscosinamide, using 1D and 2D 1H-, 13C-NMR and mass spectrometry. The new antibiotic has biosurfactant properties but differs from the known biosurfactant, viscosin, by containing glutamine rather than glutamate at the amino acid position 2 (AA2). No viscosin production was observed, however, when Ps. fluorescens DR54 was cultured in media enriched with glutamate. In vitro tests showed that purified viscosinamide also reduced fungal growth and aerial mycelium development of both P. ultimum and R. solani. Viscosinamide production by Ps. fluorescens DR54 was tightly coupled to cell proliferation in the batch cultures, as the viscosinamide produced per cell mass unit approached a constant value. In batch cultures with variable initial C, N or P nutrient levels, there were no indications of elevated viscosinamide production during starvation or maintenance of the cultures in stationary phase. Analysis of cellular fractions and spent growth media showed that a major fraction of the viscosinamide produced remained bound to the cell membrane of Ps. fluorescens DR54. The isolation, determination of structure and production characteristics of the new compound with both biosurfactant and antibiotic properties have promising perspectives for the application of Ps. fluorescens DR54 in biological control.  相似文献   

15.
Due to acid rain and nitrogen deposition, there is growing concern that other mineral nutrients, primarily potassium and phosphorus, might limit forest production in boreal forests. Ectomycorrhizal (EcM) fungi are important for the acquisition of potassium and phosphorus by trees. In a field investigation, the effects of poor potassium and phosphorus status of forest trees on the production of EcM mycelium were examined. The production of EcM mycelium was estimated in mesh bags containing sand, which were buried in the soil of forests of different potassium and phosphorus status. Mesh bags with 2% biotite or 1% apatite in sand were also buried to estimate the effect of local sources of nutrients on the production of EcM mycelium. No clear relation could be found between the production of EcM mycelium and nutrient status of the trees. Apatite stimulated the mycelial production, while biotite had no significant effect. EcM root production at the mesh bag surfaces was stimulated by apatite amendment in a forest with poor phosphorus status. The contribution of EcM fungi to apatite weathering was estimated by using rare earth elements (REE) as marker elements. The concentration of REE was 10 times higher in EcM roots, which had grown in contact with the outer surface of apatite-amended mesh bags than in EcM roots grown in contact with the biotite amended or sand-filled mesh bags. In a laboratory study, it was confirmed that REE accumulated in the roots with very low amounts <1 translocated to the shoots. The short-term effect of EcM mycelium on the elemental composition of biotite and apatite was investigated and compared with biotite- and apatite-amended mesh bags buried in trenched soil plots, which were free from EcM fungi. The mesh bags subjected to EcM fungi showed no difference in chemical composition after 17 months in the field. This study suggests that trees respond to phosphorus limitation by increased exploitation of phosphorus-containing minerals by ectomycorrhiza. However, the potential to ameliorate potassium limitation in a similar way appears to be low.  相似文献   

16.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) and its specific receptor protein control streptomycin production, streptomycin resistance, and aerial mycelium formation in Streptomyces griseus. The A-factor receptor protein (ArpA) was purified from a cell lysate of S. griseus IFO 13350. The NH2-terminal amino acid sequences of ArpA and lysyl endopeptidase-generated fragments were determined for the purpose of preparing oligonucleotide primers for cloning arpA by the PCR method. The arpA gene cloned in this way directed the synthesis of a protein having A-factor-specific binding activity when expressed in Escherichia coli under the control of the T7 promoter. The arpA gene was thus concluded to encode a 276-amino-acid protein with a calculated molecular mass of 29.1 kDa, as determined by nucleotide sequencing. The A-factor-binding activity was observed with a homodimer of ArpA. The NH2-terminal portion of ArpA contained an alpha-helix-turn-alpha-helix DNA-binding motif that showed great similarity to those of many DNA-binding proteins, which suggests that it exerts its regulatory function for the various phenotypes by directly binding to a certain key gene(s). Although a mutant strain deficient in both the ArpA protein and A-factor production overproduces streptomycin and forms aerial mycelium and spores earlier than the wild-type strain because of repressor-like behavior of ArpA, introduction of arpA into this mutant abolished simultaneously its streptomycin production and aerial mycelium formation. All of these data are consistent with the idea that ArpA acts as a repressor-type regulator for secondary metabolite formation and morphogenesis during the early growth phase and A-factor at a certain critical intracellular concentration releases the derepression, thus leading to the onset of secondary metabolism and aerial mycelium formation. The presence of ArpA-like proteins among Streptomyces spp., as revealed by PCR, together with the presence of A-factor-like compounds, suggests that a hormonal control similar to the A-factor system exists in many species of this genus.  相似文献   

17.
18.
Here we describe the isolation of a Pleurotus ostreatus gene PoDMC1. The predicted amino acid sequence of the oyster mushroom gene is 62% identical to the yeast DMC1 and 60% identical to human DMC1. The highest degree of amino acid identity (88%), however, was shown with Coprinus CoLIM15, a DMC1 homolog recently found in Coprinus cinereus. The exact matching of sizes and positions of most introns in both basidiomycete genes underlines the close relationship between these DMC1 orthologs. The RecA homolog DMC1 from yeast and its orthologs from other species have been reported to be meiosis specific and essential for sporulation. Here we show that PoDMC1 is exclusively expressed in the lamellae/basidiospore fraction of fruit bodies and not in somatic cells of fruiting bodies or in vegetative mycelium. Furthermore, the gene is not expressed in the lamellae/basidiospore fraction of a nonsporulating mutant of P. ostreatus. Since one of the major problems in cultivating the oyster mushroom is the abundant sporulation that causes allergic reactions in man, PoDMC1 could be an important target gene in constructing sporeless Pleurotus strains.  相似文献   

19.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essentially required for aerial mycelium formation and streptomycin production in Streptomyces griseus. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this strain on a high-copy-number plasmid. Subcloning and nucleotide sequencing revealed that one open reading frame with 218 amino acids, named AmfC, served as a multicopy suppressor of the aerial mycelium-defective phenotype of the A-factor-deficient strain. The amfC gene did not restore A-factor or streptomycin production, indicating that amfC is involved in aerial mycelium formation independently of secondary metabolic function. Disruption of the chromosomal amfC gene in the wild-type S. griseus strain caused a severe reduction in the abundance of spores but no effect on the shape or size of the spores. The infrequent sporulation of the amfC disruptant was reversed by introduction of amfC on a plasmid. The amfC-defective phenotype was also restored by the orf1590 gene but not by the amfR-amfA-amfB gene cluster. Nucleotide sequences homologous to the amfC gene were distributed in all of 12 Streptomyces species tested, including Streptomyces coelicolor A3(2). The amfC homolog of S. coelicolor A3(2) was cloned and its nucleotide sequence was determined. The AmfC products of S. griseus and S. coelicolor A3(2) showed a 60% identity in their amino acid sequences. Introduction of the amfC gene of S. coelicolor A3(2) into strain HH1 induced aerial mycelium formation and sporulation, which suggests that both play the same functional role in morphogenesis in the strains.  相似文献   

20.
Summary The itaconic acid production by immobilizedAspergillus terreus TTK 200-5-3 mycelium was optimized in shake flask fermentations using statistical experimental design and empirical modelling. The maximum itaconic acid concentration was calculated to be 13.3 g/l in the investigated experimental area when initial sucrose concentration was 10%, ammonium nitrate concentration 0.275% and initial pH 3. The itaconic acid product concentration using immobilized mycelium was about double of that obtained with the free mycelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号