首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradation of serum amyloid A (SAA) was studied in isolated perfused livers of mice treated with either a single injection of casein to induce an acute phase response or with 14 daily casein injections to maintain chronic inflammation. Littermates administered sterile saline served as controls. Radioiodinated SAA and apolipoprotein A-I, reconstituted with high-density lipoproteins in vivo, were studied in parallel. Degradation was monitored by appearance of acid-soluble radioactivity in the perfusate. Induction of an acute phase response reduced hepatic catabolism of SAA by 14% (from 8.6 +/- 1.2% to 7.4 +/- 1.1%/g liver in 3 hr, P less than 0.05, n = 16). The acute phase response had no effect on apolipoprotein A-I degradation or bile production. Livers from animals receiving 14 daily injections of casein were 31% less active than control livers at degrading SAA (8.1 +/- 1.6%/g/3 hr for treated group vs. 11.7 +/- 2.3%/g/3 hr for control group, P less than 0.025). Apolipoprotein A-I degradation was decreased but differences were not statistically significant and bile production was the same in both treatment groups. However, livers from treated animals were larger (mean weight 1.8 g) than those from controls (1.5 g) (P less than 0.05), although amyloid fibrils were not detected by Congo red stain. The size of the degradation products was analyzed by column chromatography. Elution profiles of perfusates from livers of chronically inflamed animals contained a peak corresponding to the molecular weight of amyloid A which was not present in perfusates from control liver. We conclude that hepatic catabolism of SAA is decreased both early and late in an inflammatory response and intermediate degradation products corresponding in size to amyloid A are released into the circulation following prolonged inflammation.  相似文献   

2.
Isocaloric substitution of polyunsaturated fat for saturated fat reduces concentrations of total plasma cholesterol and high density lipoproteins (HDL) in nonhuman primates. The biochemical mechanisms through which polyunsaturated fat lowers plasma HDL concentrations are not well understood but must involve changes in HDL production or HDL clearance from plasma, or both. To determine whether dietary polyunsaturated fat (P/S = 2.2) alters apolipoprotein (apo) A-I production, African green monkeys (Cercopithecus aethiops) were fed diets containing polyunsaturated fat or saturated fat (P/S = 0.3) each in combination with high (0.8 mg/kcal) and low (0.03 mg/kcal) amounts of dietary cholesterol. Animals fed polyunsaturated fat at either cholesterol level had lower plasma concentrations of total cholesterol and HDL cholesterol. Plasma apoA-I concentration was reduced by 16% by polyunsaturated fat in the high cholesterol group. The rate of hepatic apoA-I secretion, as estimated by the accumulation of perfusate apoA-I during recirculating liver perfusion, was reduced by 19% in animals consuming the high cholesterol, polyunsaturated fat diet. Hepatic apoA-I mRNA concentrations, as measured by DNA-excess solution hybridization, also were reduced by 22% in the high cholesterol, polyunsaturated fat-fed animals. In contrast, intestinal apoA-I mRNA concentrations were not altered by the type of dietary fat. Plasma apoA-II and hepatic apoA-II mRNA concentrations also were not altered by the type of dietary fat. These data indicate that dietary polyunsaturated fat can selectively alter the expression of the apoA-I gene in a tissue-specific manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

4.
Serum amyloid A (SAA) was markedly increased in the plasma and in the liver upon acute inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) in mice, and SAA in the plasma was exclusively associated with HDL. In contrast, no HDL was present in the plasma and only a small amount of SAA was found in the VLDL/LDL fraction (d < 1.063 g/ml) after the induction of inflammation in ABCA1-knockout (KO) mice, although SAA increased in the liver. Primary hepatocytes isolated from LPS-treated wild-type (WT) and ABCA1-KO mice both secreted SAA into the medium. SAA secreted from WT hepatocytes was associated with HDL, whereas SAA from ABCA1-KO hepatocytes was recovered in the fraction that was >1.21 g/ml. The behavior of apolipoprotein A-I (apoA-I) was the same as that of SAA in HDL biogenesis by WT and ABCA1-KO mouse hepatocytes. Lipid-free SAA and apoA-I both stabilized ABCA1 and caused cellular lipid release in WT mouse-derived fibroblasts, but not in ABCA1-KO mouse-derived fibroblasts, in vitro when added exogenously. We conclude that both SAA and apoA-I generate HDL largely in hepatocytes only in the presence of ABCA1, likely being secreted in a lipid-free form to interact with cellular ABCA1. In the absence of ABCA1, nonlipidated SAA is seemingly removed rapidly from the extracellular space.  相似文献   

5.
Serum amyloid A (SAA) is an acute-phase protein mainly associated with HDL. To study the role of SAA in mediating changes in HDL composition and metabolism during inflammation, we generated mice in which the two major acute-phase SAA isoforms, SAA1.1 and SAA2.1, were deleted [SAA knockout (SAAKO) mice], and induced an acute phase to compare lipid and apolipoprotein parameters between wild-type (WT) and SAAKO mice. Our data indicate that SAA does not affect apolipoprotein A-I (apoA-I) levels or clearance under steady-state conditions. HDL and plasma triglyceride levels following lipopolysaccharide administration, as well as the decline in liver expression of apoA-I and apoA-II, did not differ between both groups of mice. The expected size increase of WT acute-phase HDL was surprisingly also seen in SAAKO acute-phase HDL despite the absence of SAA. HDLs from both mice showed increased phospholipid and unesterified cholesterol content during the acute phase. We therefore conclude that in the mouse, SAA does not impact HDL levels, apoA-I clearance, or HDL size during the acute phase and that the increased size of acute-phase HDL in mice is associated with an increased content of surface lipids, particularly phospholipids, and not surface proteins. These data need to be transferred to humans with caution due to differences in apoA-I structure and remodeling functions.  相似文献   

6.
Isolated livers from rhesus monkeys (Macaca mulatta) were perfused in order to asses the nature of newly synthesized hepatic lipoprotein. Perfusate containing [3H]leucine was recirculated for 1.5 hr, followed by an additional 2.5-hr perfusion with fresh perfusate. Equilibrium density gradient ultracentrifugation clearly separated VLDL from LDL. The apoprotein composition of VLDL secreted by the liver was similar to that of serum VLDL. The perfusate LDL contained some poorly radiolabeled, apoB-rich material, which appeared to be contaminating serum LDL. There was also some material of an LDL-like density, which was rich in radiolabeled apoE. Rate zonal density gradient ultracentrifugation fractionated HDL. All perfusate HDL fractions had a decreased cholesteryl ester/unesterified cholesterol ratio, compared to serum HDL. Serum HDL distributed in one symmetric peak near the middle of the gradient, with coincident peaks of apoA-I and apoA-II. The least dense fractions of the perfusate gradient were rich in radiolabeled apoE. The middle of the perfusate gradient contained particles rich in radiolabeled apoA-I and apoA-II. The peak of apoA-I was offset from the apoA-II peak towards the denser end of the gradient. The dense end of the HDL gradient contained lipoprotein-free apoA-I, apoE, and small amounts of apoA-II, probably resulting from the relative instability of nascent lipoprotein compared to serum lipoprotein. Perfusate HDL apoA-I isoforms were more basic than serum apoA-I isoforms. Preliminary experiments, using noncentrifugal methods, suggest that some hepatic apoA-I is secreted in a lipoprotein-free form. In conclusion, the isolated rhesus monkey liver produces VLDL similar to serum VLDL, but produces LDL and HDL which differ in several important aspects from serum LDL and HDL.  相似文献   

7.
Isolated rat livers were perfused for four hours in a recirculating system containing washed rat erythrocytes. Biologically screened radioiodinated rat high density lipoproteins (1.090 < d < 1.21 g/ml) were added to the perfusate with different amounts of whole serum to supply unlabeled rat high density lipoproteins. The protein moiety of the lipoprotein contained more than 95% of the radioiodine. The fraction of apolipoprotein mass degraded during the perfusion was quantified by the linear increment of non-protein-bound radioiodine in the perfusate, corrected for the increment observed during recirculation of the perfusate in the absence of a liver. The small amount of (131)I secreted into bile was added to calculate the fractional catabolic rate. The fractional catabolic rate ranged from 0.22 to 0.63% per hour in 12 experiments and was inversely related to the size of the perfusate pool of high density apolipoprotein. The absolute catabolic rate of high density apolipoprotein (fractional catabolic rate x pool size) in three livers in which the concentration of rat HDL in the perfusate approximated that in intact rats was 69.5 +/- 10.4 micro g hr(-1) (mean +/- SD). The rate of disappearance of cholesteryl esters of rat high density lipoproteins (labeled biologically by injecting donor rats with [5-(3)H]mevalonic acid) from the liver perfusate did not exceed that of the apoprotein component. These rates were compared with catabolic rates for rat high density lipoproteins in intact rats. Fractional catabolic rate in vivo, obtained by multicompartmental analysis of the disappearance curve of (131)I-high density apolipoprotein from blood plasma, was 11.9 +/- 1.3% hr(-1) (mean +/- SD). Total catabolic rate in vivo (fractional catabolic rate x intravascular pool of high density apolipoprotein) was 986 +/- 145 micro g hr(-1) (mean +/- SD). The results suggest that only a small fraction of high density lipoproteins in blood plasma of rats is degraded directly by the liver.-Sigurdsson, G., S-P. Noel, and R. J. Havel. Quantification of the hepatic contribution to the catabolism of high density lipoproteins in rats.  相似文献   

8.
Apolipoprotein B (apoB) of plasma low density lipoproteins (LDL) binds to high affinity receptors on many cell types. A minor subclass of high density lipoproteins (HDL), termed HDL1, which contains apoE but lacks apoB, binds to the same receptor. Bound lipoproteins are engulfed, degraded, and regulate intracellular cholesterol metabolism and receptor activity. The HDL of many patients with liver disease is rich in apoE. We tested the hypothesis that such patient HDL would reduce LDL binding and would themselves regulate cellular cholesterol metabolism. Normal HDL had little effect on binding, uptake, and degradation of 125I-labeled LDL by cultured human skin fibroblasts. Patient HDL (d 1.063-1.21 g/ml) inhibited these processes, and in 15 of the 25 samples studied there was more than 50% inhibition at 125I-labeled LDL and HDL protein concentrations of 10 micrograms/ml and 25 micrograms/ml, respectively. There was a significant negative correlation between the percentage of 125I-labeled LDL bound and the apoE content of the competing HDL (r = -0.54, P less than 0.01). Patient 125I-labeled HDL was also taken up and degraded by the fibroblasts, apparently through the LDL-receptor pathway, stimulated cellular cholesterol esterification, increased cell cholesteryl ester content, and suppressed cholesterol synthesis and receptor activity. We conclude that LDL catabolism by the receptor-mediated pathway may be impaired in liver disease and that patient HDL may deliver cholesterol to cells.  相似文献   

9.
To evaluate the factors that regulate HDL catabolism in vivo, we have measured the clearance of human apoA-I from rabbit plasma by following the isotopic decay of (125)I-apoA-I and the clearance of unlabeled apoA-I using a radioimmunometric assay (RIA). We show that the clearance of unlabeled apoA-I is 3-fold slower than that of (125)I-apoA-I. The mass clearance of iodinated apoA-I, as determined by RIA, is superimposable with the isotopic clearance of (125)I-apoA-I. The data demonstrate that iodination of tyrosine residues alters the apoA-I molecule in a manner that promotes an accelerated catabolism. The clearance from rabbit plasma of unmodified apoA-I on HDL(3) and a reconstituted HDL particle (LpA-I) were very similar and about 3-4-fold slower than that for (125)I-apoA-I on the lipoproteins. Therefore, HDL turnover in the rabbit is much slower than that estimated from tracer kinetic studies. To determine the role of the kidney in HDL metabolism, the kinetics of unmodified apoA-I and LpA-I were reevaluated in animals after a unilateral nephrectomy. Removal of one kidney was associated with a 40-50% reduction in creatinine clearance rates and a 34% decrease in the clearance rate of unlabeled apoA-I and LpA-I particles. In contrast, the clearance of (125)I-labeled molecules was much less affected by the removal of a kidney; FCR for (125)I-LpA-I was reduced by <10%. The data show that the kidneys are responsible for most (70%) of the catabolism of apoA-I and HDL in vivo, while (125)I-labeled apoA-I and HDL are rapidly catabolized by different tissues. Thus, the kidney is the major site for HDL catabolism in vivo. Modification of tyrosine residues on apoA-I may increase its plasma clearance rate by enhancing extra-renal degradation pathways.  相似文献   

10.
Plasma concentrations of high density lipoprotein (HDL) cholesterol and its major apolipoprotein (apo)A-I are significantly decreased in inflammatory states. Plasma levels of the serum amyloid A (SAA) protein increase markedly during the acute phase response and are elevated in many chronic inflammatory states. Because SAA is associated with HDL and has been shown to be capable of displacing apoA-I from HDL in vitro, it is believed that expression of SAA is the primary cause of the reduced HDL cholesterol and apoA-I in inflammatory states. In order to directly test this hypothesis, we constructed recombinant adenoviruses expressing the murine SAA and human SAA1 genes (the major acute phase SAA proteins in both species). These recombinant adenoviruses were injected intravenously into wild-type and human apoA-I transgenic mice and the effects of SAA expression on HDL cholesterol and apoA-I were compared with mice injected with a control adenovirus. Plasma levels of SAA were comparable to those seen in the acute phase response in mice and humans. However, despite high plasma levels of murine or human SAA, no significant changes in HDL cholesterol or apoA-I levels were observed. SAA was found associated with HDL but did not specifically alter the cholesterol or human apoA-I distribution among lipoproteins. In summary, high plasma levels of SAA in the absence of a generalized acute phase response did not result in reduction of HDL cholesterol or apoA-I in mice, suggesting that there are components of the acute phase response other than SAA expression that may directly influence HDL metabolism.  相似文献   

11.
Serum amyloid A (SAA) circulates bound to HDL3 during the acute-phase response (APR), and recent evidence suggests that elevated levels of SAA may be a risk factor for cardiovascular disease. In this study, SAA-HDL was produced in vivo during the APR and without the APR by injection of an adenoviral vector expressing human SAA-1. SAA-HDL was also produced in vitro by incubating mouse HDL with recombinant mouse SAA and by SAA-expressing cultured hepatoma cells. Whether produced in vivo or in vitro, SAA-HDL floated at a density corresponding to that of human HDL3 (d 1.12 g/ml) separate from other apolipoproteins, including apolipoprotein A-I (apoA-I; d 1.10 g/ml) when either apoA-I or apolipoprotein E (apoE) was present. In the absence of both apoA-I and apoE, SAA was found in VLDL and LDL, with low levels in the HDL and the lipid-poor fractions suggesting that other HDL apolipoproteins are incapable of facilitating the formation of SAA-HDL. We conclude that SAA does not exist in plasma as a lipid-free protein. In the presence of HDL-associated apoA-I or apoE, SAA circulates as SAA-HDL with a density corresponding to that of human HDL3. In the absence of both apoA-I and apoE, SAA-HDL is not formed and SAA associates with any available lipoprotein.  相似文献   

12.
Miida T  Yamada T  Yamadera T  Ozaki K  Inano K  Okada M 《Biochemistry》1999,38(51):16958-16962
Serum amyloid A protein (SAA), an acute-phase reactant in reactive amyloidosis, has high affinity for high-density lipoprotein (HDL). When SAA is added to HDL, SAA displaces apolipoprotein A-I (apoA-I) and phospholipid from the HDL particles. These dissociated components may form prebeta1-HDL because free apoA-I can associate with phospholipid to become a lipoprotein having prebeta mobility. To determine whether SAA generates prebeta1-HDL from alpha-migrating HDL, we investigated the effects of recombinant SAA on HDL subfraction concentration using nondenaturing two-dimensional gradient gel electrophoresis. When we added SAA (0.5 mg/mL) to plasma, the prebeta1-HDL concentration increased by 164% (from 4.7% +/- 1.3% to 12.4% +/- 3.2% of apoA-I, p < 0.005). The increase in prebeta1-HDL was proportional to the dose of SAA. When we added SAA to a column of Sepharose beads coupled to the isolated HDL (alpha-migrating HDL), prebeta1-HDL was dissociated from the column together with the SAA-associated HDL. In summary, we demonstrate that SAA generates prebeta1-HDL from alpha-migrating HDL. We speculate that SAA-mediated HDL remodeling may take place in inflammation.  相似文献   

13.
The in vivo role of the liver in lipoprotein homeostasis in the preruminant calf, a functional monogastric, has been evaluated. To this end, the hydrodynamic and physicochemical properties, density distribution, apolipoprotein content, and flow rates of the various lipoprotein particle species were determined in the hepatic afferent (portal vein and hepatic artery) and efferent (hepatic vein) vessels in fasting, 3-week-old male preruminant calves. Plasma lipoprotein profiles were established by physicochemical analyses of a series of subfractions isolated by isopycnic density gradient ultracentrifugation. Triglyceride-rich very low density lipoproteins (VLDL) (d less than 1.018 g/ml) were minor plasma constituents (approximately 1% or less of total d less than 1.180 g/ml lipoproteins). The major apolipoproteins of VLDL were apoB-like species, while the complement of minor components included bovine apoA-I and apoC-like peptides. Particles with diameters (193-207 A) typical of low density lipoproteins (LDL) were present over the density interval 1.026-1.076 g/ml; however, only LDL of d 1.026-1.046 g/ml were present as a unique and homogeneous size subspecies, containing the two apoB-like species as major protein components in addition to elevated cholesteryl ester contents. LDL represented approximately 10% of total d less than 1.180 g/ml lipoproteins in fasting plasma from all three hepatic vessels. Overlap in the density distribution of particles with the diameters of LDL and of high density lipoproteins (HDL) occurred in the density range from 1.046 to 1.076 g/ml; these HDL particles were 130-150 A in diameter. HDL were the major plasma particles (approximately 90% of total d less than 1.180 g/ml substances) and presented as two distinct populations which we have termed light (HDLL) and heavy (HDLH) HDL. Light HDL (d 1.060-1.091 g/ml) ranged in size from 120 to 140 A, and were distinguished by their high cholesteryl ester (29-33%) and low triglyceride (1-3%) contents; apoA-I was the principal apolipoprotein. Small amounts of apolipoproteins with Mr less than 60,000, including apoC-like peptides, were also present. Heavy HDL (d 1.091-1.180 g/ml) accounted for almost half (47%) of total calf HDL, and like HDLL, were also enriched in cholesteryl ester and apoA-I; they ranged in size from 93 to 120 A. The protein moiety of HDLH was distinct in its possession of an apoA-IV-like protein (Mr 42,000). Blood flow rates were determined by electromagnetic flowmetry, thereby permitting determination of net lipoprotein balance across the liver. VLDL were efficiently removed during passage through the liver (net uptake 1.06 mg/min per kg body weight).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Apolipoprotein A-I (apoA-I) is the major apolipoprotein of high-density lipoproteins (HDL) and has an important role in the regulation of the stability, lipid transport, and metabolism of HDL particles. To identify novel proteins that are involved in HDL metabolism, we used mature apoA-I (amino acids 25-267) as a bait for the screening of a human liver two-hybrid cDNA library. Among the identified genes, several encoded known proteins, including serum amyloid A(2a) (SAA(2a)), apoC-I, and phosphodiesterase HCAM1 (PDE1A), found to interact with apoA-I. In addition, we have cloned a novel 29 kDa apoA-I interacting protein, which we named AI-BP (apoA-I binding protein). The AI-BP encoding gene, APOA1BP, which is located on chromosome 1q21, is composed of six exons and five introns and spans 2.5 kb. Northern blot analysis demonstrated ubiquitous expression of the APOA1BP mRNA with the highest expression in kidney, heart, liver, thyroid gland, adrenal gland, and testis. AI-BP protein is not detectable in serum of healthy probands, but serum samples of patients with septic syndromes may contain elevated levels of AI-BP. Significant amounts of AI-BP protein are found in cerebrospinal fluid and urine of healthy probands. The stimulation of cells derived from the kidney proximal tubules with apoA-I or HDL induces a concentration-dependent secretion of AI-BP indicating an important role for AI-BP, in the renal tubular degradation or resorption of apoA-I.  相似文献   

15.
The role of lecithin:cholesterol acyltransferase (LCAT) in the formation of plasma high density lipoproteins (HDL) was studied in a series of in vitro incubations in which perfusates from isolated African green monkey livers were incubated at 37 degrees C with partially purified LCAT for between 1 and 13 hr. The HDL particles isolated from monkey liver perfusate stored at 4 degrees C and not exposed to added LCAT contained apoA-I and apoE, were deficient in neutral lipids, and were observed by electron microscopy as discoidal particles. Particle sizes, measured as Stokes' diameters by gradient gel electrophoresis (GGE), ranged between 7.8 nm and 15.0 nm. The properties of perfusate HDL were unchanged following incubation at 37 degrees C in the presence of an LCAT inhibitor. However, HDL subfractions derived from incubations at 37 degrees C with active LCAT contained apoA-I as the major apoprotein, appeared round by electron microscopy, and possessed chemical compositions similar to plasma HDL. The HDL isolated from perfusate incubations at 37 degrees C with low amounts of LCAT had a particle size and chemical composition similar to plasma HDL3a. In three of four perfusates incubated with higher levels of LCAT activity, the HDL products consisted of two distinct HDL subpopulations when examined by GGE. The major subpopulation was similar in size and composition to plasma HDL2a, while the minor subpopulation demonstrated the characteristics of plasma HDL2b. The data indicate that the discoidal HDL particles secreted by perfused monkey livers can serve as precursors to three of the major HDL subpopulations observed in plasma.  相似文献   

16.
High density lipoproteins (HDL) and their main protein constituent, apolipoprotein A-I (apoA-I), exert potentially anti-atherogenic properties within the arterial wall. However, it is unknown how they are transported from the blood stream into the vascular wall. Here we investigated the interaction of apoA-I with endothelial cells. At 4 degrees C endothelial cells bound 125I-apoA-I with high affinity, Kd = 2.1 microg/ml and in a saturable manner (Bmax of 35 ng/mg cell protein). At 37 degrees C, the cell association of apoA-I revealed similar affinity as at 4 degrees C (Kd = 2.2 microg/ml) but the maximum specific cell association was much enhanced (Bmax = 360 ng/mg cell protein). Binding and cell association was competed by excess unlabeled apoA-I and HDL but not by albumin. Biotinylation experiments and electron microscopy studies showed that endothelial cells internalize labeled apoA-I. Only minor amounts of the internalized apoA-I were degraded. Cultivated in a Transwell system, the cells transported a fraction of 125I-apoA-I from the apical to the basolateral compartment in a competable and temperature-sensitive manner. Furthermore, after specific transport the originally prebeta-mobile and lipid-free apoA-I was recovered as particles which have electrophoretic alpha-mobility. We conclude that endothelial cells transcytose and lipidate lipid-free apoA-I.  相似文献   

17.
The interaction of HDL2b, a major subclass (d = 1.063 - 1.100 g/ml) of human plasma high-density lipoproteins, with discoidal complexes composed of dimyristoylphosphatidylcholine (DMPC) and apolipoprotein A-I (weight ratio, DMPC/apolipoprotein A-I (2.1 - 2.5:1); dimensions, 10.0 x 4.4 nm) was investigated. Incubation at 37 degrees C for 4.5 h of HDL2b with discoidal complexes resulted in a transfer of DMPC from the discoidal complexes to the HDL2b, a release of lipid-free apolipoprotein A-I from the discoidal complexes during such transfer, and a dissociation of some apolipoprotein A-I from the HDL2b surface. The number of discoidal complexes degraded during interaction with HDL2b depended on the initial molar ratio of HDL2b to discoidal complexes. Approximately one molecule of HDL2b was required for the degradation of one discoidal complex particle, and the degradation process appeared limited by the capacity of the HDL2b for uptake of DMPC. Degradation of discoidal complexes was also observed when human plasma LDL (d = 1.006-1.063 g/ml) was substituted for HDL2b in the interaction mixture.  相似文献   

18.
Rates of secretion of the arginine-rich and A-I apolipoproteins into perfusates of rat livers were measured by specific radioimmunoassays. Livers were perfused for 6 hr in a recirculating system in the presence or absence of 5,5'-dithionitrobenzoic acid, an inhibitor of lecithin-cholesterol acyltransferase. Arginine-rich apoprotein (ARP) was secreted at a constant or increasing hourly rate of about 40 micro g/g liver, whereas the rate of accumulation of apoprotein A-I decreased progressively from about 12 to less than 5 micro g/g liver. These rates were not affected by inhibition of lecithin-cholesterol acyltransferase. The distribution of these two apolipoproteins was also measured in ultracentrifugally separated lipoprotein fractions from perfusates and blood plasma. Apoprotein A-I was mainly in high density lipoproteins, with the remainder in proteins of density > 1.21 g/ml. The percent of apoprotein A-I in the latter fraction was lowest in plasma (5%); in perfusates it was greater when the enzyme inhibitor was present (33%) than in its absence (11%). By contrast much less ARP was in proteins of d > 1.21 g/ml in perfusates than in blood plasma. Discoidal high density lipoproteins, recovered from perfusates in which lecithin-cholesterol acyltransferase was inhibited, contained much more arginine-rich apoprotein than apoprotein A-I (ratio = 10:1). The ratio in spherical plasma HDL was 1:7 and that in perfusate high density lipoproteins obtained in the absence of enzyme inhibitor was intermediate (2:1). It is concluded that: 1) the arginine-rich apoprotein is a major apolipoprotein whereas apoprotein A-I is a minor apolipoprotein secreted by the perfused rat liver; 2) the properties of the high density lipoproteins produced in this system are remarkably similar to those found in humans with genetically determined deficiency of lecithin-cholesterol acyltransferase.  相似文献   

19.
Isolated rat livers were perfused for 4 hours in a recirculating system containing washed rat erythrocytes. Biologically screened, radioiodinated low density lipoproteins (1.030 < d < 1.055 g/ml) were added to the perfusate with different amounts of whole serum to supply unlabeled rat low density lipoproteins. Apolipoprotein B contained 90% of the bound (131)I, other apolipoproteins contained 4%, and lipids contained the remainder. The fraction of apolipoprotein mass degraded during the perfusion was quantified by the linear increment of non-protein-bound radioiodine in the perfusate, corrected for the increment observed during recirculation of the perfusate in the absence of a liver. The fractional catabolic rate ranged from 0.3 to 1.7%/hr in seven experiments and was inversely related to the size of perfusate pool of low density apolipoprotein. The catabolic rate of low density apolipoprotein (fractional catabolic rate x pool size) in four livers, in which the concentration of rat low density lipoproteins was 50-100% of that present in intact rats, was 5.3 +/- 2.7 micro g hr(-1) (mean +/- SD). Similar results were obtained with human low density lipoproteins. These rates were compared with catabolic rates for the apoprotein of rat low density lipoproteins in intact animals. Fractional catabolic rate in vivo, obtained by multi-compartmental analysis of the disappearance curve of (131)I-labeled low density apolipoprotein from blood plasma, was 15.2 +/- 3.1% hr(-1) (mean +/- SD). Total catabolic rate in vivo (fractional catabolic rate x intravascular pool of low density apolipoprotein) was 76 +/- 14 micro g hr(-1) (mean +/- SD). The results suggest that only a small fraction of low density apolipoprotein mass in rats is degraded by the liver.  相似文献   

20.
The uptake and degradation of 125I-labeled (a) native aldolase, (b) cathepsin D-inactivated aldolase, and (c) aldolase inactivated by oxidized glutathione were studied in perfused rat liver. All three forms of aldolase were removed from the perfusion medium and degraded by the liver, but the uptake of the glutathione-inactivated enzyme (half-life in perfusate = 10 min) was much faster than that of the native enzyme (half-life = 30 min) or the cathepsin-inactivated enzyme (half-life = 42 min). The degradation of the enzyme was almost totally inhibited by leupeptin, indicating that thiol proteinases in lysosomes play an important role in the digestion process. Degradation of native and cathepsin D-inactivated aldolase appeared to be slower than that of the glutathione-inactivated enzyme but studies in which liver was preloaded with aldolase by perfusion at 19 degrees C and then warming to 37 degrees C indicated that the rate of degradation of all three forms was similar. It is concluded that the liver is capable of distinguishing between the glutathione-altered aldolase and native or partially degraded aldolase with regard to endocytosis, but that all three forms are degraded at similar rates once within lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号