首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Macrophages express a number of proteins involved in sterol efflux pathways, including apolipoprotein E (apoE) and scavenger receptor class B type I (SR-BI). We have investigated a potential interaction between these two sterol efflux pathways in modulating overall macrophage sterol flux. We utilized an experimental system in which we increased expression of each of these proteins to a high physiologic range in order to perform our evaluation. We show that in apoE-expressing cells, a 4-fold increase in SR-BI expression leads to reduction of sterol and phospholipid efflux. SR-BI-mediated reduction in sterol efflux was only observed in cells that expressed endogenous apoE. In J774 cells that did not express apoE, a similar increase in SR-BI level led to increased sterol efflux. The divergent response of sterol efflux after increased SR-BI was maintained in the presence of a number of structurally diverse extracellular sterol acceptors. Increased SR-BI expression also enhanced sterol efflux to exogenously added apoE. Investigation of a potential mechanism for reduced efflux in apoE-expressing cells indicated that SR-BI expression reduced macrophage apoE by accelerating the degradation of newly synthesized apoE. This led to decreased secretion of apoE and reduced the fraction of apoE sequestered on the cell surface. Thus, enhanced SR-BI expression in macrophages can reduce the cellular level and secretion of apoE by accelerating degradation of the newly synthesized protein. This reduction of endogenous apoE is accompanied by reduced sterol efflux from macrophages.  相似文献   

3.
The cellular biology of scavenger receptor class B type I   总被引:10,自引:0,他引:10  
The HDL receptor scavenger receptor class B type I plays an important role in meditating the uptake of HDL-derived cholesterol and cholesteryl ester in the liver and steroidogenic tissues. However, the mechanism by which scavenger receptor class B type I mediates selective cholesterol uptake is unclear. In hepatocytes scavenger receptor class B type I mediates the transcytosis of cholesterol into bile, appears to be expressed on both basolateral and apical membranes, and directly interacts with a PDZ domain containing protein that may modulate the activity of scavenger receptor class B type I. This suggests the involvement of scavenger receptor class B type I in higher order complexes in polarized cells. Scavenger receptor class B type I expression has been shown to alter plasma membrane cholesterol distribution and induce the formation of novel membrane structures, suggesting multiple roles for scavenger receptor class B type I in the cell. A close examination of scavenger receptor class B type I function in polarized cells may yield new insights into the mechanism of scavenger receptor class B type I-mediated HDL selective uptake and the effects of scavenger receptor class B type I on cellular cholesterol homeostasis.  相似文献   

4.
5.
6.
7.
8.
Scavenger receptor class B type I (SR-BI) mediates the selective transfer of cholesteryl ester from HDL to cells. We previously established that SR-BI overexpressed in livers of apolipoprotein A-I-deficient mice processes exogenous human HDL2 to incrementally smaller HDL particles. When mixed with normal mouse plasma either in vivo or ex vivo, SR-BI-generated HDL "remnants" rapidly remodel to form HDL-sized lipoproteins. In this study, we analyzed HDLs throughout the process of HDL remnant formation and investigated the mechanism of conversion to larger particles. Upon interacting with SR-BI, alpha-migrating HDL2 is initially converted to a prealpha-migrating particle that is ultimately processed to a smaller alpha-migrating HDL remnant. SR-BI does not appear to generate prebeta-1 HDL particles. When incubated with isolated lipoprotein fractions, HDL remnants are converted to lipoprotein particles corresponding in size to the particle incubated with the HDL remnant. HDL remnant conversion is not altered in phospholipid transfer protein (PLTP)-deficient mouse plasma or by the addition of purified PLTP. Although LCAT-deficient plasma promoted only partial conversion, this deficiency was attributable to the nature of HDL particles in LCAT-/- mice rather than to a requirement for LCAT in the remodeling process. We conclude that HDL remnants, generated by SR-BI, are converted to larger particles by rapidly reassociating with existing HDL particles in an enzyme-independent manner.  相似文献   

9.
10.
Cholesterol uptake and the mechanisms that regulate cholesterol translocation from the intestinal lumen into enterocytes remain for the most part unclear. Since scavenger receptor class B type I (SR-BI) has been suggested to play a role in cholesterol absorption, we investigated cellular SR-BI modulation by various potential effectors administered in both apical and basolateral sides of Caco-2 cells. With differentiation, Caco-2 cells increased SR-BI protein expression. Western blot analysis showed the ability of cholesterol and oxysterols in both cell compartments to reduce SR-BI protein expression. Among the n-3, n-6, and n-9 fatty acid families, only eicosapentaenoic acid was able to lower SR-BI protein expression on both sides, whereas apical alpha-linolenic acid decreased SR-BI abundance and basolateral arachidonic acid (AA) raised it. Epidermal growth factor and growth hormone, either in the apical or basolateral medium, diminished SR-BI cellular content, while insulin displayed the same effect only on the basolateral side. In the presence of proinflammatory agents (LPS, TNF-alpha, IFN-gamma), Caco-2 cells exhibited differential behavior. SR-BI was downregulated by lipopolysaccharide on both sides. Finally, WY-14643 fibrate diminished SR-BI protein expression when it was added to the apical medium. Biotinylation studies in response to selected stimuli revealed that regulatory modifications in SR-BI protein expression occurred for the most part at the apical cell surface irrespective of the effector location. Our data indicate that various effectors supplied to the apical and basolateral compartments may impact on SR-BI at the apical membrane, thus suggesting potential regulation of intestinal cholesterol absorption and distribution in various intracellular pools.  相似文献   

11.
The current study used the human Caco-2 cell line and mouse intestine to explore the topology of expression of the class B type I scavenger receptor (SR-BI) in intestinal cells. Results showed that intestinal cells expressed only the SR-BI isoform with little or no expression of the SR-BII variant. The expression of SR-BI in Caco-2 cells is differentiation dependent, with little or no expression in preconfluent undifferentiated cells. Analysis of Caco-2 cells cultured in Transwell porous membranes revealed the presence of SR-BI on both the apical and basolateral cell surface. Immunoblot analysis of mouse intestinal cell extracts demonstrated a gradation of SR-BI expression along the gastrocolic axis of the intestine, with the highest level of expression in the proximal intestine and decreasing to minimal expression levels in the distal intestine. Immunofluorescence studies with SR-BI-specific antibodies also confirmed this expression pattern. Importantly, the immunofluorescence studies also revealed that SR-BI immunoreactivity was most intense in the apical membrane of the brush border in the duodenum. The crypt cells did not show any reactivity with SR-BI antibodies. The localization of SR-BI in the jejunum was found to be different from that observed in the duodenum. SR-BI was present on both apical and basolateral surfaces of the jejunum villus. Localization of SR-BI in the ileum was also different, with little SR-BI detectable on either apical or basolateral membranes.Taken together, these results suggest that SR-BI has the potential to serve several functions in the intestine. The localization of SR-BI on the apical surface of the proximal intestine is consistent with the hypothesis of its possible role in dietary cholesterol absorption, whereas SR-BI present on the basolateral surface of the distal intestine suggests its possible involvement in intestinal lipoprotein uptake.  相似文献   

12.
Scavenger receptor class B type I (SR-BI) is an HDL receptor that mediates selective HDL lipid uptake. Peroxisomes play an important role in lipid metabolism and peroxisomal targeting signal type 1 (PTS1)-containing proteins are translocated to peroxisomes by the peroxisomal targeting import receptor, Pex5p. We have previously identified a PTS1 motif in the intracellular domain of rat SR-BI. Here, we examine the possible interaction between Pex5p and SR-BI. Expression of a Flag-tagged intracellular domain of SR-BI resulted in translocation to the peroxisome as demonstrated by double labeling with anti-Flag IgG and anti-catalase IgG analyzed by confocal microscopy. Immunoprecipitation experiments with anti-SR-BI antibody showed that Pex5p co-precipitated with SR-BI. However, when an antibody against Pex5p was used for immunoprecipitation, only the 57kDa, non-glycosylated form, of SR-BI co-precipitated. We conclude that the PTS1 domain of SR-BI is functional and can mediate peroxisomal interaction via Pex5p, in vitro.  相似文献   

13.
The scavenger receptor class B type I (SR-BI), which mediates selective cellular cholesterol uptake from high-density lipoproteins (HDLs), plays a key role in reverse cholesterol transport. The orphan nuclear receptor liver receptor homolog 1 (LRH-1) and SR-BI are co-expressed in liver and ovary, suggesting that LRH-1 might control the expression of SR-BI in these tissues. LRH-1 induces human and mouse SR-BI promoter activity by binding to an LRH-1 response element in the promoter. Retroviral expression of LRH-1 robustly induces SR-BI, an effect associated with histone H3 acetylation on the SR-BI promoter. The decrease in SR-BI mRNA levels in livers of LRH-1(+/-) animals provides in vivo evidence that LRH-1 regulates SR-BI expression. Our data demonstrate that SR-BI is an LRH-1 target gene and underscore the pivotal role of LRH-1 in reverse cholesterol transport.  相似文献   

14.
15.
The scavenger receptor, class B, type I (SR-BI), is the predominant receptor that supplies plasma cholesterol to steroidogenic tissues in rodents. We showed previously that steroidogenic factor-1 (SF-1) binds a sequence in the human SR-BI promoter whose integrity is required for high-level SR-BI expression in cultured adrenocortical tumor cells. We now provide in vivo evidence that SF-1 regulates SR-BI. During mouse embryogenesis, SR-BI mRNA was initially expressed in the genital ridge of both sexes and persisted in the developing testes but not ovary. This sexually dimorphic expression profile of SR-BI expression in the gonads mirrors that of SF-1. No SR-BI mRNA was detected in the gonadal ridge of day 11.5 SF-1 knockout embryos. Both SR-BI and SF-1 mRNA were expressed in the cortical cells of the nascent adrenal glands. These studies directly support SF-1 participating in the regulation of SR-BI in vivo. We examined the effect of cAMP on SR-BI mRNA and protein in mouse adrenocortical (Y1-BS1) and testicular carcinoma Leydig (MA-10) cells. The time courses of induction were strikingly similar to those described for other cAMP- and SF-1-regulated genes. Addition of lipoproteins reduced SR-BI expression in Y1-BS1 cells, an effect that was reversed by administration of cAMP analogs. SR-BI mRNA and protein were expressed at high levels in the adrenal glands of knockout mice lacking the steroidogenic acute regulatory protein; these mice have extensive lipid deposits in the adrenocortical cells and high circulating levels of ACTH. Taken together, these studies suggest that trophic hormones can override the suppressive effect of cholesterol on SR-BI expression, thus ensuring that steroidogenesis is maintained during stress.  相似文献   

16.
Both in vitro and in vivo studies of scavenger receptor class B type I (SR-BI) have implicated it as a likely participant in the metabolism of HDL cholesterol. To investigate the effect of SR-BI on atherogenesis, we examined two lines of SR-BI transgenic mice with high (10-fold increases) and low (2-fold increases) SR-BI expression in an inbred mouse background hemizygous for a human apolipoprotein (apo) B transgene. Unlike non-HDL cholesterol levels that minimally differed in the various groups of animals, HDL cholesterol levels were inversely related to SR-BI expression. Mice with the low expression SR-BI transgene had a 50% reduction in HDL cholesterol, whereas the high expression SR-BI transgene was associated with 2-fold decreases in HDL cholesterol as well as dramatic alterations in HDL composition and size including the near absence of alpha-migrating particles as determined by two-dimensional electrophoresis. The low expression SR-BI/apo B transgenics had more than a 2-fold decrease in the development of diet-induced fatty streak lesions compared with the apo B transgenics (4448 +/- 1908 micrometer(2)/aorta to 10133 +/- 4035 micrometer (2)/aorta; p < 0.001), whereas the high expression SR-BI/apo B transgenics had an atherogenic response similar to that of the apo B transgenics (14692 +/- 7238 micrometer(2)/aorta) but 3-fold greater than the low SR-BI/apo B mice (p < 0.001). The prominent anti-atherogenic effect of moderate SR-BI expression provides in vivo support for the hypothesis that HDL functions to inhibit atherogenesis through its interactions with SR-BI in facilitating reverse cholesterol transport. The failure of the high SR-BI/apo B transgenics to have similar or even greater reductions in atherogenesis suggests that the changes resulting from extremely high SR-BI expression including dramatic changes in lipoproteins may have both pro- and anti-atherogenic consequences, illustrating the complexity of the relationship between SR-BI and atherogenesis.  相似文献   

17.
Testicular Sertoli cells phagocytose apoptotic spermatogenic cells in a manner depending on the membrane phospholipid phosphatidylserine (PS) expressed at the surface of the latter cell type. Our previous studies have indicated that class B scavenger receptor type I (SR-BI) is responsible for the PS-mediated phagocytosis by Sertoli cells. We examined here whether SR-BI binds directly to PS. A cell line acquired the ability to bind to PS-exposing apoptotic cells and to incorporate PS-containing liposomes when it was forced to express SR-BI. Furthermore, the extracellular domain of rat SR-BI fused with human Fc (SRBIecd-Fc) bound to PS with a dissociation equilibrium constant of 2.4 x 10(-7) m in a cell-free solid-phase assay, whereas other phospholipids including phosphatidylethanolamine, phosphatidylinositol, and phosphatidylcholine were poor binding targets. The binding activity was enhanced when CaCl(2) was included in the assay or when SRBIecd-Fc was pre-treated with N-glycanase. A portion of the extracellular domain spanning amino acid positions 33 and 191 (numbered with respect to the amino terminus) fused with Fc (SRBI33-191-Fc) showed activity and phospholipid specificity equivalent to those of SRBIecd-Fc. Finally, SRBI33-191-Fc bound to the surface of apoptotic cells with externalized PS, and the injection of SRBI33-191-Fc into the seminiferous tubules of live mice increased the number of apoptotic spermatogenic cells. These results allowed us to conclude that SR-BI is a phagocytosis-inducing PS receptor of Sertoli cells.  相似文献   

18.
Background and aimsScavenger receptor class B1 (SCARB1) - also known as the high-density lipoprotein (HDL) receptor - is a multi-ligand scavenger receptor that is primarily expressed in liver and steroidogenic organs. This receptor is known for its function in reverse cholesterol transport (RCT) in mammals and hence disruption leads to a massive increase in HDL cholesterol in these species. The extracellular domain of SCARB1 - which is important for cholesterol handling - is highly conserved across multiple vertebrates, except in zebrafish. Methods: To examine the functional conservation of SCARB1 among vertebrates, two stable scarb1 knockout zebrafish lines, scarb1 715delA (scarb1 −1 nt) and scarb1 715_716insGG (scarb1 +2 nt), were created using CRISPR-Cas9 technology.ResultsWe demonstrate that, in zebrafish, SCARB1 deficiency leads to disruption of carotenoid-based pigmentation, reduced fertility, and a decreased larvae survival rate, whereas steroidogenesis was unaltered. The observed reduced fertility is driven by defects in female fertility (−50 %, p < 0.001). Importantly, these alterations were independent of changes in free (wild-type 2.4 ± 0.2 μg/μl versus scarb1−/− 2.0 ± 0.1 μg/μl) as well as total (wild-type 4.2 ± 0.4 μg/μl versus scarb1−/− 4.0 ± 0.3 μg/μl) plasma cholesterol levels. Uptake of HDL in the liver of scarb1−/− zebrafish larvae was reduced (−86.7 %, p < 0.001), but this coincided with reduced perfusion of the liver. No effect was observed on lipoprotein uptake in the caudal vein. SCARB1 deficient canaries, which also lack carotenoids in their plumage, similarly as scarb1−/− zebrafish, failed to show an increase in plasma free- and total cholesterol levels.ConclusionOur findings suggest that the specific function of SCARB1 in maintaining plasma cholesterol could be an evolutionary novelty that became prominent in mammals, while other known functions were already present earlier during vertebrate evolution.  相似文献   

19.
20.
We discovered that the hepatitis C virus (HCV) envelope glycoprotein E2 binds to human hepatoma cell lines independently of the previously proposed HCV receptor CD81. Comparative binding studies using recombinant E2 from the most prevalent 1a and 1b genotypes revealed that E2 recognition by hepatoma cells is independent from the viral isolate, while E2-CD81 interaction is isolate specific. Binding of soluble E2 to human hepatoma cells was impaired by deletion of the hypervariable region 1 (HVR1), but the wild-type phenotype was recovered by introducing a compensatory mutation reported previously to rescue infectivity of an HVR1-deleted HCV infectious clone. We have identified the receptor responsible for E2 binding to human hepatic cells as the human scavenger receptor class B type I (SR-BI). E2-SR-BI interaction is very selective since neither mouse SR-BI nor the closely related human scavenger receptor CD36, were able to bind E2. Finally, E2 recognition by SR-BI was competed out in an isolate-specific manner both on the hepatoma cell line and on the human SR-BI-transfected cell line by an anti-HVR1 monoclonal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号