首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligodendrocytes are the myelin-forming cells in the central nervous system. In the brain, oligodendrocyte precursors arise in multiple restricted foci, distributed along the caudorostral axis of the ventricular neuroepithelium. In chick embryonic hind-, mid- and caudal forebrain, oligodendrocytes have a basoventral origin, while in the rostral fore-brain oligodendrocytes emerge from alar territories (Perez Villegas, E. M., Olivier, C., Spassky, N., Poncet, C., Cochard, P., Zalc, B., Thomas, J. L. and Martinez, S. (1999) Dev. Biol. 216, 98-113). To investigate the respective territories colonized by oligodendrocyte progenitor cells that originate from either the basoventral or alar foci, we have created a series of quail-chick chimeras. Homotopic chimeras demonstrate clearly that, during embryonic development, oligodendrocyte progenitors that emerge from the alar anterior entopeduncular area migrate tangentially to invade the entire telencephalon, whereas those from the basal rhombomeric foci show a restricted rostrocaudal distribution and colonize only their rhombomere of origin. Heterotopic chimeras indicate that differences in the migratory properties of oligodendroglial cells do not depend on their basoventral or alar ventricular origin. Irrespective of their origin (basal or alar), oligodendrocytes migrate only short distances in the hindbrain and long distances in the prosencephalon. Furthermore, we provide evidence that, in the developing chick brain, all telencephalic oligodendrocytes originate from the anterior entopeduncular area and that the prominent role of anterior entopeduncular area in telencephalic oligodendrogenesis is conserved between birds and mammals.  相似文献   

2.
3.
This study addresses the role of Sonic hedgehog (Shh) in promoting the generation of oligodendrocytes in the mouse telencephalon. We show that in the forebrain, expression of the early oligodendrocyte markers Olig2, plp/dm20 and PDGFR(alpha) corresponds to regions of Shh expression. To directly test if Shh can induce the development of oligodendrocytes within the telencephalon, we use retroviral vectors to ectopically express Shh within the mouse embryonic telencephalon. We find that infections with Shh-expressing retrovirus at embryonic day 9.5, result in ectopic Olig2 and PDGFR(alpha) expression by mid-embryogenesis. By postnatal day 21, cells expressing ectopic Shh overwhelmingly adopt an oligodendrocyte identity. To determine if the loss of telencephalic Shh correspondingly results in the loss of oligodendrocyte production, we studied Nkx2.1 mutant mice in which telencephalic expression of Shh is selectively lost. In accordance with Shh playing a role in oligodendrogenesis, within the medial ganglionic eminence of Nkx2.1 mutants, the early expression of PDGFR(alpha) is absent and the level of Olig2 expression is diminished in this region. In addition, in these same mutants, expression of both Shh and plp/dm20 is lost in the hypothalamus. Notably, in the prospective amygdala region where Shh expression persists in the Nkx2.1 mutant, the presence of plp/dm20 is unperturbed. Further supporting the idea that Shh is required for the in vivo establishment of early oligodendrocyte populations, expression of PDGFR(alpha) can be partially rescued by virally mediated expression of Shh in the Nkx2.1 mutant telencephalon. Interestingly, despite the apparent requirement for Shh for oligodendrocyte specification in vivo, all regions of either wild-type or Nkx2.1 mutant telencephalon are competent to produce oligodendrocytes in vitro. Furthermore, analysis of CNS tissue from Shh null animals definitively shows that, in vitro, Shh is not required for the generation of oligodendrocytes. We propose that oligodendrocyte specification is negatively regulated in vivo and that Shh generates oligodendrocytes by overcoming this inhibition. Furthermore, it appears that a Shh-independent pathway for generating oligodendrocytes exists.  相似文献   

4.
Oligodendrocytes are the myelin forming cells of the central nervous system. Over the last decade, their development in the embryonic brain and spinal cord has been documented following the discovery of early oligodendroglial markers. This review highlights the fundamental results obtained on the specification and migration of oligodendroglial cells and illustrates our advances in the knowledge of the cell lineage expressing plp (proteolipid protein), one of the early oligodendroglial genes.  相似文献   

5.
Transferrin-binding protein (TfBP) has been shown to be a novel protein, structurally related to the chicken heat shock protein 108. The physiological function of this protein, however, has not yet been established. Antiserum to TfBP selectively stains transferrin- and iron-rich oligodendrocytes and choroidal epithelium in the adult and embryonic chick brain, suggesting a role for this protein in transferrin and iron storage in these cells. In this study, we further demonstrate TfBP-immunoreactivity (IR) in the blood vessels of the embryonic chick central nervous system. A strong TfBP-IR was present in blood vessels from E6, declined from E10 and was absent by E18. Thus, the expression of the TfBP in the blood vessels precedes its expression in the oligodendrocytes. At the subcellular level, TfBP-IR was confined to the cytoplasm of capillary pericytes while the Tf-receptor IR was associated with the capillary endothelium of the brain. The up-regulated expression of TfBP, together with the Tf-receptor of the brain capillaries, suggests that pericytes may be associated with the high iron uptake required for the metabolic demands of the developing brain. D. W. Kim and H. N. Lee contributed equally to this work.  相似文献   

6.
The oligodendroglial population includes Type I and II cells related to several thin axons, Type III cells with a few processes in relation to relatively thick axons and Type IV cells related to a single thick axon. This structural diversity of oligodendrocytes is accompanied by a molecular heterogeneity. In the chicken spinal cord, oligodendrocytes have begun to contact axons at embryonic day (E)10 and compact sheaths have appeared by E12. At the latter stage, most sheath-forming oligodendrocytes contact more than one axon. At E15, however, each sheath-forming cell seems to have developed a Schwann cell-like anatomy, being related to a single axon. Based on these findings, the present study examines more thoroughly the anatomy of early developing oligodendrocytes in the chicken spinal cord. Examination of slices immunostained with antibodies against the oligodendroglial marker O4 showed that a few positive cells are present at E6, after which the occurrence increases with age. At E12 most immunostained cells have two or more processes. At E15 however, dye-injected oligodendrocytes have developed a Type IV structure. Between E12 and E15, mean sheath length increases about 4×, from 50 μm to over 200 μm, while the length of the spinal cord increases 36% only. This indicates that early oligodendrocytes in chicken white matter develop a Type IV anatomy between E12 and E15 through an elimination of sheaths.  相似文献   

7.
We isolated a chick homologue of BM88 (cBM88), a cell-intrinsic nervous system-specific protein and examined the expression of BM88 mRNA and protein in the developing brain, spinal cord and peripheral nervous system of the chick embryo by in situ hybridization and immunohistochemistry. cBM88 is widely expressed in the developing central nervous system, both in the ventricular and mantle zones where precursor and differentiated cells lie, respectively. In the spinal cord, particularly strong cBM88 expression is detected ventrally in the motor neuron area. cBM88 is also expressed in the dorsal root ganglia and sympathetic ganglia. In the early neural tube, cBM88 is first detected at HH stage 15 and its expression increases with embryonic age. At early stages, cBM88 expression is weaker in the ventricular zone (VZ) and higher in the mantle zone. At later stages, when gliogenesis persists instead of neurogenesis, BM88 expression is abolished in the VZ and cBM88 is restricted in the neuron-containing mantle zone of the neural tube. Association of cBM88 expression with cells of the neuronal lineage in the chick spinal cord was demonstrated using a combination of markers characteristic of neuronal or glial precursors, as well as markers of differentiated neuronal, oligodendroglial and astroglial cells. In addition to the spinal cord, cBM88 is expressed in the HH stage 45 (embryonic day 19) brain, including the telencephalon, diencephalon, mesencephalon, optic tectum and cerebellum. BM88 is also widely expressed in the mouse embryonic CNS and PNS, in both nestin-positive neuroepithelial cells and post-mitotic betaIII-tubulin positive neurons.  相似文献   

8.
P25alpha/tubulin polymerization promoting protein (TPPP) is a brain specific phosphoprotein that displays microtubule bundling activity. In the mature brain, p25alpha/TPPP distributes to oligodendrocytes and choroid plexus epithelium. We mapped the spatial and temporal distribution of p25alpha/TPPP in the developing rat brain. Having localized its expression to neuronal tissue by Western blot analyses, the distribution of p25alpha/TPPP to developing oligodendrocytes was confirmed using a specific antibody. In the pre-natal and post-natal brain, p25alpha/TPPP was localized to the perinuclear cytoplasm of myelinating oligodendrocytes from embryonic (E) day E20 as verified from cellular co-localization with 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP). Oligodendrocyte progenitor cells and pre-myelinating oligodendrocytes identified by the expression of NG2 proteoglycan and CD9, respectively, both failed to contain p25alpha/TPPP. In contrast, P25alpha/TPPP co-localized with beta(IV)-tubulin from post-natal (p) day P10 suggesting that p25alpha/TPPP plays an important role for tubulin-related transport in developing, myelinating oligodendrocytes.  相似文献   

9.
Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement.  相似文献   

10.
Neurons and oligodendrocytes are produced in the adult brain subventricular zone (SVZ) from neural stem cells (B cells), which express GFAP and have morphological properties of astrocytes. We report here on the identification B cells expressing the PDGFRalpha in the adult SVZ. Specifically labeled PDGFRalpha expressing B cells in vivo generate neurons and oligodendrocytes. Conditional ablation of PDGFRalpha in a subpopulation of postnatal stem cells showed that this receptor is required for oligodendrogenesis, but not neurogenesis. Infusion of PDGF alone was sufficient to arrest neuroblast production and induce SVZ B cell proliferation contributing to the generation of large hyperplasias with some features of gliomas. The work demonstrates that PDGFRalpha signaling occurs early in the adult stem cell lineage and may help regulate the balance between oligodendrocyte and neuron production. Excessive PDGF activation in the SVZ in stem cells is sufficient to induce hallmarks associated with early stages of tumor formation.  相似文献   

11.
Most studies on the origin of oligodendrocyte lineage have been performed in the spinal cord. By contrast, molecular mechanisms that regulate the appearance of the oligodendroglial lineage in the brain have not yet attracted much attention. We provide evidence for three distinct sources of oligodendrocytes in the mouse telencephalon. In addition to two subpallial ventricular foci, the anterior entopeduncular area and the medial ganglionic eminence, the rostral telencephalon also gives rise to oligodendrocytes. We show that oligodendrocytes in the olfactory bulb are generated within the rostral pallium from ventricular progenitors characterized by the expression of PLP: We provide evidence that these Plp oligodendrocyte progenitors do not depend on signal transduction mediated by platelet-derived growth factor receptors (PDGFRs), and therefore propose that they belong to a different lineage than the PDGFRalpha-expressing progenitors. Moreover, induction of oligodendrocytes in the telencephalon is dependent on sonic hedgehog signaling, as in the spinal cord. In all these telencephalic ventricular territories, oligodendrocyte progenitors were detected at about the same developmental stage as in the spinal cord. However, both in vivo and in vitro, the differentiation into O4-positive pre-oligodendrocytes was postponed by 4-5 days in the telencephalon in comparison with the spinal cord. This delay between determination and differentiation appears to be intrinsic to telencephalic oligodendrocytes, as it was not shortened by diffusible or cell-cell contact factors present in the spinal cord.  相似文献   

12.
Oligodendrocytes develop from precursor cells in the neuroepithelium of the ventral ventricular zone. Oligodendrocytes in the different stages of development are characterized by expression of a number of different marker molecules such as myelin genes, growth factors, and specific antigens. We have previously identified that transferrin binding protein (TfBP), a member of heat shock protein 90 families, is a novel avian ER-associated membrane protein that is specifically localized in oligodendrocytes in adult chicken CNS. In this study we describe the developmental expression of TfBP in the embryonic chick spinal cord. A few, distinct, TfBP+ cells appeared at the lateral margin of the subventricular neuroepithelium of the spinal cord at E7. Thereafter, some TfBP+ cells, exhibited a migrative form of unipolar or bipolar shape occurred around E8 in the mantle layer, midway between the neuroepithelium and the marginal layer of the primitive spinal cord. Thereafter, the TfBP+ cells rapidly increased in number as well as their staining intensity, and overall distribution of TfBP+ cells at E15 was comparable to that of a mature spinal cord. Our observations suggest that TfBP is expressed in the subpopulation of oligodednrcyte lineage in the development and a putative role of TfBP in relation to transferrin and iron trafficking is considered. SW Park and HS Lim contributed equally to this work.  相似文献   

13.
In order to generate cell lines that grow continuously in tissue culture and that express the biochemical properties of oligodendrocytes (the cells which produce myelin in the central nervous system), we isolated oligodendrocytes from calf brain and fused them with C6 rat glioma cells. Of the 60 hybrid clones tested, several expressed oligodendroglial properties at levels comparable to isolated oligodendrocytes. In particular, hybrid clone CO-13-7 showed a high level of expression of all six oligodendroglial properties tested: 2′ : 3′-cyclic nucleotide 3′-phosphohydroiase, glycero-3-phosphate dehydrogenase, and induction of GPDH by hydrocortisone, all of which were also found in C6 cells and in oligodendrocytes; and galactocerebroside, sulfatide, and myelin basic protein, which were found in normal oligodendrocytes but not in C6 glioma cells. Therefore, the hybrids express a spectrum of oligodendrocyte biochemical properties that is not found in any other cell line that can be maintained continuously in tissue culture.  相似文献   

14.
Cells of the oligodendroglial lineage express Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-preferring glutamate receptors (AMPA-GluR) during development. Prolonged activation of their AMPA-GluR causes Ca2+ overload, resulting in excitotoxic death. Prior studies have shown that oligodendroglial progenitors and immature oligodendrocytes are susceptible to excitotoxicity, whereas mature oligodendrocytes are resistant. An unresolved issue has been why Ca2+-permeability of AMPA-GluR varies so markedly with oligodendroglial development, although the level of expression of edited GluR2, an AMPA-GluR subunit which blocks Ca2+ entry, is relatively constant. To address this question, we performed Ca2+ imaging, molecular and electrophysiological analyses using purified cultures of the rat oligodendroglial lineage. We demonstrate that transient up-regulation of expression of GluR3 and GluR4 subunits in oligodendroglial progenitors and immature oligodendrocytes results in the assembly by these cells, but not by oligodendroglial pre-progenitors or mature oligodendrocytes, of a population of AMPA-GluR which lack GluR2. This stage-specific up-regulation of edited GluR2-free, and hence Ca2+-permeable, AMPA-GluR explains the selective susceptibility to excitotoxicity of cells at these stages of oligodendroglial differentiation, and is likely to be important to these cells in the trans-synaptic Ca2+-signaling from glutamatergic neurons, which occurs in hippocampus  相似文献   

15.
Buntinx  M.  Vanderlocht  J.  Hellings  N.  Vandenabeele  F.  Lambrichts  I.  Raus  J.  Ameloot  M.  Stinissen  P.  Steels  P. 《Brain Cell Biology》2003,32(1):25-38
Oligodendrocytes, the myelin-forming cells of the central nervous system, are the target of pathogenic immune responses in multiple sclerosis. Primary cultures of human oligodendrocytes have been used to unravel the cellular and molecular mechanisms of immune-mediated injury of oligodendrocytes. However, these studies are hampered by the limited availability of viable human brain tissue. The present study was aimed at comparing the morphological and biochemical characteristics of the human oligodendroglial cell lines HOG, MO3.13 and KG-1C. We have determined oligodendrocyte-associated features of these lines and analyzed the degree to which they can be used as a model of human oligodendrocytes arrested at specific developmental stages. The oligodendroglial cell lines all exhibited markers of immature oligodendrocytes, such as CNPase and GalC, but not the astrocytic marker GFAP. Differentiation could be induced in HOG and MO3.13 cells, as was seen through a decrease in proliferation, an increase in process extension without formation of myelin sheets and up-regulation of genes associated with mature oligodendrocytes such as MBP and MOG. Microarray analysis revealed the expression of MAG, MOBP and OMG genes in HOG cells. The KG-1C cells displayed poor growth characteristics in the recommended conditions. In conclusion, our data show that the oligodendroglial cell lines HOG and MO3.13 can be used as a model of human oligodendrocytes ‘arrested’ in an immature developmental stage. Culturing in appropriate medium can induce further differentiation of these cells. These cell lines can therefore be applied as a model to study immune-mediated injury of oligodendrocytes in relation to disease.  相似文献   

16.
Dorsal spinal cord inhibits oligodendrocyte development   总被引:3,自引:0,他引:3  
Oligodendrocytes are the myelinating cells of the mammalian central nervous system. In the mouse spinal cord, oligodendrocytes are generated from strictly restricted regions of the ventral ventricular zone. To investigate how they originate from these specific regions, we used an explant culture system of the E12 mouse cervical spinal cord and hindbrain. In this culture system O4(+) cells were first detected along the ventral midline of the explant and were subsequently expanded to the dorsal region similar to in vivo. When we cultured the ventral and dorsal spinal cords separately, a robust increase in the number of O4(+) cells was observed in the ventral fragment. The number of both progenitor cells and mature cells also increased in the ventral fragment. This phenomenon suggests the presence of inhibitory factor for oligodendrocyte development from dorsal spinal cord. BMP4, a strong candidate for this factor that is secreted from the dorsal spinal cord, did not affect oligodendrocyte development. Previous studies demonstrated that signals from the notochord and ventral spinal cord, such as sonic hedgehog and neuregulin, promote the ventral region-specific development of oligodendrocytes. Our present study demonstrates that the dorsal spinal cord negatively regulates oligodendrocyte development.  相似文献   

17.
Hypocretin/Orexin (H/O) neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼85% of embryonic development) in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development), thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.  相似文献   

18.
19.
20.
Capillaries derived from the perineural vascular plexus invade brain tissue early in embryonic development. Considerably later they differentiate into blood-brain barrier (BBB)-forming blood vessels. In the chick, the BBB as defined by impermeability for the protein horseradish peroxidase develops around embryonic day 13. We have previously found that brain endothelial cells start to express a number of proteins at around the same time, suggesting that these proteins play a role in BBB function. Here we describe a 74 kd protein defined by the monoclonal antibody HT7 that is expressed on the surface of chick embryonic blood cells and brain endothelial but on no other endothelial cells. This protein is not detectable on early embryonic brain endothelium, but is expressed by these cells on embryonic day 10. It is absent in choroid plexus endothelial cells which represent permeable fenestrated endothelial cells. The antigen is expressed on choroid plexus epithelium which is the site of the blood-cerebrospinal fluid barrier. Since it is also found in basolateral membranes of kidney tubules, it may be involved in specific carrier mechanisms. Embryonic mouse brain tissue transplanted on the chick chorio-allantoic membrane induces the expression of this antigen on endothelial cells derived from the chorio-allantois. Brain tissue can therefore induce in endothelial cells in vivo the expression of a molecule characteristic of brain endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号