首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Researchers working in the burgeoning field of adult stem cell biology seek to understand the signals that regulate the behavior and function of stem cells during normal homeostasis and disease states. The understanding of adult stem cells has broad reaching implications for the future of regenerative medicine1. For example, better knowledge about adult stem cell biology can facilitate the design of therapeutic strategies in which organs are triggered to heal themselves or even the creation of methods for growing organs in vitro that can be transplanted into humans1. The zebrafish has become a powerful animal model for the study of vertebrate cell biology2. There has been extensive documentation and analysis of embryonic development in the zebrafish3. Only recently have scientists sought to document adult anatomy and surgical dissection techniques4, as there has been a progressive movement within the zebrafish community to broaden the applications of this research organism to adult studies. For example, there are expanding interests in using zebrafish to investigate the biology of adult stem cell populations and make sophisticated adult models of diseases such as cancer5. Historically, isolation of the zebrafish adult kidney has been instrumental for studying hematopoiesis, as the kidney is the anatomical location of blood cell production in fish6,7. The kidney is composed of nephron functional units found in arborized arrangements, surrounded by hematopoietic tissue that is dispersed throughout the intervening spaces. The hematopoietic component consists of hematopoietic stem cells (HSCs) and their progeny that inhabit the kidney until they terminally differentiate8. In addition, it is now appreciated that a group of renal stem/progenitor cells (RPCs) also inhabit the zebrafish kidney organ and enable both kidney regeneration and growth, as observed in other fish species9-11. In light of this new discovery, the zebrafish kidney is one organ that houses the location of two exciting opportunities for adult stem cell biology studies. It is clear that many outstanding questions could be well served with this experimental system. To encourage expansion of this field, it is beneficial to document detailed methods of visualizing and then isolating the adult zebrafish kidney organ. This protocol details our procedure for dissection of the adult kidney from both unfixed and fixed animals. Dissection of the kidney organ can be used to isolate and characterize hematopoietic and renal stem cells and their offspring using established techniques such as histology, fluorescence activated cell sorting (FACS)11,12, expression profiling13,14, and transplantation11,15. We hope that dissemination of this protocol will provide researchers with the knowledge to implement broader use of zebrafish studies that ultimately can be translated for human application.  相似文献   

3.
Hematopoiesis: an evolving paradigm for stem cell biology   总被引:1,自引:0,他引:1  
Orkin SH  Zon LI 《Cell》2008,132(4):631-644
  相似文献   

4.
5.
Hematopoiesis     
Enormous numbers of adult blood cells are constantly regenerated throughout life from hematopoietic stem cells through a series of progenitor stages. Accessibility, robust functional assays, well-established prospective isolation, and successful clinical application made hematopoiesis the classical mammalian stem cell system. Most of the basic concepts of stem cell biology have been defined in this system. At the same time, many long-standing disputes in hematopoiesis research illustrate our still limited understanding. Here we discuss the embryonic development and lifelong maintenance of the hematopoietic system, its cellular components, and some of the hypotheses about the molecular mechanisms involved in controlling hematopoietic cell fates.  相似文献   

6.
Elucidating the in vitro differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells is important for understanding both normal and pathological hematopoietic development in vivo. For this purpose, a robust and simple hematopoietic differentiation system that can faithfully trace in vivo hematopoiesis is necessary. In this study, we established a novel serum-free monolayer culture that can trace the in vivo hematopoietic pathway from ES/iPS cells to functional definitive blood cells via mesodermal progenitors. Stepwise tuning of exogenous cytokine cocktails induced the hematopoietic mesodermal progenitors via primitive streak cells. These progenitors were then differentiated into various cell lineages depending on the hematopoietic cytokines present. Moreover, single cell deposition assay revealed that common bipotential hemoangiogenic progenitors were induced in our culture. Our system provides a new, robust, and simple method for investigating the mechanisms of mesodermal and hematopoietic differentiation.  相似文献   

7.
8.
Lipocalin 2 (LCN2), a secreted protein of the lipocalin family, induces apoptosis in some types of cells and inhibits bacterial growth by sequestration of the iron-laden bacterial siderophore. We have recently reported that LCN2 inhibits the production of red blood cells in the mouse. Here we analyzed the role of LCN2 in human hematopoiesis. Expression of LCN2 was observed not only in mature cells such as those of the granulocyte/macrophage and erythroid lineages but also in hematopoietic stem/progenitor cells. We also examined expression of two candidate receptors for LCN2, brain type organic cation transporter (BOCT) and megalin, in various cell types. BOCT showed relatively high levels of expression in erythroid and hematopoietic stem/progenitor cells but lower levels in granulocyte/macrophage and T lymphoid cells. Megalin was expressed at high levels in T lymphoid and erythroid cells but at lower levels in granulocyte/macrophage lineage cells. LCN2 suppressed the growth of erythroid and monocyte/macrophage lineages in vitro, but did not have this effect on cells of other lineages. In addition, immature hematopoietic stem/progenitor cells were not sensitive to LCN2. These results demonstrate a lineage-specific role for LCN2 in human hematopoiesis that is reminiscent of its effects upon mouse hematopoiesis and strongly suggest an important in vivo function of LCN2 in the regulation of human hematopoiesis.  相似文献   

9.
Chen D  Lewis RL  Kaufman DS 《BioTechniques》2003,35(6):1253-1261
Human embryonic stem (ES) cells provide a unique model and an important resource to analyze early hematopoietic development. Other systems to study mammalian hematopoiesis include mouse ES cells, dissection of timed mouse embryos, or use of human postnatal hematopoietic tissue typically isolated from bone marrow or umbilical cord blood. All these models have particular strengths and weaknesses. The extensive studies on murine hematopoiesis provide a basis for work on the human developmental system. Since there are likely some important species differences, use of human ES cells now provides an optimal means to evaluate basic cellular and molecular mechanisms that regulate the beginning stages of human blood development, prior to derivation of hematopoietic stem cells (HSCs). Eventually, research on human ES cells may provide an alternative source of HSCs and other blood products for hematopoietic cell transplantation or other cellular therapies.  相似文献   

10.
张春霞  刘峰 《遗传》2021,(4):295-306
血液系统是维持机体生命活动最重要的系统之一,为机体提供所需的氧气和营养物质,通过物质交换维持内环境的稳态,同时为机体提供免疫防御与保护。血细胞是血液的重要组成成分,机体中成熟血细胞类型起源于具有自我更新及分化潜能的多能成体干细胞—造血干细胞(hematopoietic stem cells,HSCs)。造血干细胞及各类血细胞产生、发育及成熟的过程称为造血过程,该过程开始于胚胎发育早期并贯穿整个生命过程,任一阶段出现异常都可能导致血液疾病的发生。因此,深入探究造血发育过程及其调控机制对于认识并治疗血液疾病至关重要。近年来,以小鼠(Mus musculus)和斑马鱼(Danio rerio)作为动物模型来研究造血发育取得了一系列的进展。其中,BMP、Notch和Wnt等信号通路对造血干细胞的命运决定和产生发挥了重要作用。本文对这些信号通路在小鼠和斑马鱼造血过程中的调控作用进行系统总结,以期能够完善造血发育过程的调控网络并为临床应用提供指导。  相似文献   

11.
12.
13.
The hallmark of vertebrate definitive hematopoiesis is the establishment of the hematopoietic stem/progenitor cell (HSPC) pool during embryogenesis. This process involves a defined ontogenic switching of HSPCs in successive hematopoietic compartments and is evolutionarily conserved from teleost fish to human. In zebrafish, HSPCs originate from the ventral wall of the dorsal aorta (VDA), from which they subsequently mobilize to an intermediate hematopoietic site known as the caudal hematopoietic tissue (CHT) and finally colonize the kidney for adult hematopoiesis. Despite substantial understanding of the ontogeny of HSPCs, the molecular basis governing migration, colonization and maintenance of HSPCs remains to be explored fully. Here, we report the isolation and characterization of two zebrafish mutants, rumba(hkz1) and samba(hkz2), that are defective in generating definitive hematopoiesis. We find that HSPC initiation in the VDA and subsequent homing to the CHT are not affected in these two mutants. However, the further development of HSPCs in the CHT is compromised in both mutants. Positional cloning reveals that Rumba is a novel nuclear C2H2 zinc-finger factor with unknown function and samba encodes an evolutionarily conserved protein that is homologous to human augmin complex subunit 3 (HAUS3). Furthermore, we show that these two factors independently regulate cell cycle progression of HSPCs and are cell autonomously required for HPSC development in the CHT. Our study identifies Rumba and Haus3 as two essential regulators of HSPC maintenance during zebrafish fetal hematopoiesis.  相似文献   

14.
In a genetic screen for mutations affecting organogenesis in the medaka, Oryzias latipes, we identified eight mutants with defects in embryonic hematopoiesis. These mutations were classified into seven complementation groups. In this paper, we characterize the five mutants that were confirmed in the next generation. The beni fuji mutant was defective in the generation of blood cells, exhibiting reduced blood cells at the initiation of circulation. Mutations in two genes, lady finger and ryogyoku, caused abnormal morphology of blood cells, i.e., deformation, along with a progressive decrease in the number of blood cells. The sekirei mutant exhibited photosensitivity with autofluorescent blood cells. Mutations in kyoho resulted in huge blood cells that were approximately three times longer than the wild-type blood cells. The spectrum of phenotypes identified in this study is similar to that of the zebrafish hematopoietic mutants except for the huge blood cells in kyoho. Our results demonstrate that medaka, as well as zebrafish, is a useful model to study hematopoiesis.  相似文献   

15.
We have recently demonstrated through a chemical screen in the zebrafish embryo that prostaglandin E2 (PGE2) is an evolutionarily conserved regulator of hematopoietic stem cell (HSC) number. These results have further been confirmed by in vitro and in vivo studies in the murine model. Bioactive PGE2 derivatives have potential clinical application to accelerate recovery of the hematopoietic system following chemotherapy or irradiation. Ex vivo expansion of HSCs prior to stem cell transplantation may improve reconstitution of hematopoiesis and immune function. This article aims to summarize current knowledge of PGE2-mediated regulation of blood cell homeostasis as well as to discuss the proposed use of PGE2 to expand hematopoietic stem cells for transplantation in the clinical setting.  相似文献   

16.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

17.
The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one's life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium provides a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis.  相似文献   

18.
Human embryonic stem cells (hESCs) and induced pluripotent stem cells are excellent models for the study of embryonic hematopoiesis in vitro, aiding the design of new differentiation models that may be applicable to cell-replacement therapies. Adult and fetal hematopoietic stem cells are currently being used in biomedical applications; however, the latest advances in regenerative medicine and stem cell biology suggest that hESC-derived hematopoietic stem cells are an outstanding tool for enhancing immunotherapy and treatments for blood disorders and cancer, for example. In this review, we compare various methods used for inducing in vitro hematopoietic differentiation from hESCs, based on co-culture with stromal cells or formation of embryoid bodies, and analyse their ability to give rise to hematopoietic precursors, with emphasis on their engraftment potential as a measure of their functionality in vivo.  相似文献   

19.
Pluripotent, self-renewing, hematopoietic stem cells are considered good targets for gene modification to treat a wide variety of disorders. However, as many genes are expressed in a stage-specific manner during the course of hematopoietic development, it is necessary to establish a lineage-specific gene expression system to ensure the proper expression of transduced genes in hematopoietic stem cells. In this study, we constructed a VSV-G-pseudotyped, human immunodeficiency virus type 1-based, self-inactivating lentivirus vector that expressed green fluorescent protein (GFP) under the control of the human CD41 (glycoprotein 2b; GP2b) promoter; this activity is restricted to megakaryocytic lineage cells. The recombinant virus was used to infect human peripheral blood CD34+ (hematopoietic stem/progenitor) cells, and lineage-specific gene expression was monitored with GFP measurements. The analysis by FACS determined that GFP expression driven by the GP2b promoter was restricted to megakaryocytic progenitors and was not present in erythrocytes. Furthermore, in the hematopoietic colony-forming assay, GFP expression was restricted to colony-forming units-megakaryocyte (CFU-Meg) colonies under the control of the GP2b promoter, whereas all myeloid colonies (burst-forming units-erythroid, colony-forming units-granulocyte-macrophage, and CFU-Meg) expressed GFP when the transgene was regulated by the cytomegalovirus promoter. These results demonstrated lineage-specific expression after gene transduction of hematopoietic stem cells. The application of this vector system should provide a useful tool for gene therapy to treat disorders associated with megakaryocyte (platelet) dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号