首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When newly hatched Caenorhabditis elegans larvae are starved, their primordial germ cells (PGCs) arrest in the post-S phase. This starvation-induced PGC arrest is mediated by the DAF-18/PTEN-AKT-1/PKB nutrient-sensing pathway. Here, we report that the conserved spindle assembly checkpoint (SAC) component MDF-1/MAD1 is required for the PGC arrest. We identified 2 Akt kinase phosphorylation sites on MDF-1. Expression of a non-phosphorylatable mutant MDF-1 partially suppressed the defect in the starvation-induced PGC arrest in L1 larvae lacking DAF-18, suggesting that MDF-1 regulates germ cell proliferation as a downstream target of AKT-1, thereby demonstrating a functional link between cell-cycle regulation by the SAC components and nutrient sensing by DAF-18-AKT-1 during post-embryonic development. The phosphorylation status of MDF-1 affects its binding to another SAC component, MDF-2/MAD2. The loss of MDF-2 or another SAC component also caused inappropriate germ cell proliferation, but the defect was less severe than that caused by mdf-1 hemizygosity, suggesting that MDF-1 causes the PGC arrest by two mechanisms, one involving MDF-2 and another that is independent of other SAC components.  相似文献   

2.
Kitagawa R  Law E  Tang L  Rose AM 《Current biology : CB》2002,12(24):2118-2123
Accurate chromosome segregation is achieved by a series of highly regulated processes that culminate in the metaphase-to-anaphase transition of the cell cycle. In the budding yeast Saccharomyces cerevisiae, the degradation of the securin protein Pds1 reverses the binding and inhibition of the separase protein Esp1. Esp1 cleaves Scc1. That cleavage promotes the dissociation of the cohesin complex from the chromosomes and leads the separation of sister chromatids. Proteolysis of Pds1 is regulated by the anaphase-promoting complex (APC), a large multi-subunit E3 ubiquitin ligase whose activity is regulated by Cdc20/Fizzy. We have previously shown that the Caenorhabditis elegans genes mdf-1/MAD1 and mdf-2/MAD2 encode key members of the spindle checkpoint. Loss of function of either gene leads to an accumulation of somatic and heritable defects and ultimately results in death. Here we show that a missense mutation in fzy-1/CDC20/Fizzy suppresses mdf-1 lethality. We identified a FZY-1-interacting protein, IFY-1, a novel destruction-box protein. IFY-1 accumulates in one-cell-arrested emb-30/APC4 embryos and interacts with SEP-1, a C. elegans separase, suggesting that IFY-1 functions as a C. elegans securin.  相似文献   

3.
Stein KK  Davis ES  Hays T  Golden A 《Genetics》2007,175(1):107-123
Temperature-sensitive mutations in subunits of the Caenorhabditis elegans anaphase-promoting complex (APC) arrest at metaphase of meiosis I at the restrictive temperature. Embryos depleted of the APC co-activator FZY-1 by RNAi also arrest at this stage. To identify regulators and potential substrates of the APC, we performed a genetic suppressor screen with a weak allele of the APC subunit MAT-3/CDC23/APC8, whose defects are specific to meiosis. Twenty-seven suppressors that resulted in embryonic viability and larval development at the restrictive temperature were isolated. We have identified the molecular lesions in 18 of these suppressors, which correspond to five genes. In addition to a single intragenic suppressor, we found mutations in the APC co-activator fzy-1 and in three spindle assembly checkpoint genes, mdf-1, mdf-2, and mdf-3/san-1, orthologs of Mad1, Mad2, and Mad3, respectively. Reduction-of-function alleles of mdf-2 and mdf-3 suppress APC mutants and exhibit pleiotropic phenotypes in an otherwise wild-type background. Analysis of a single separation-of-function allele of mdf-1 suggests that MDF-1 has a dual role during development. These studies provide evidence that components of the spindle assembly checkpoint may regulate the metaphase-to-anaphase transition in the absence of spindle damage during C. elegans meiosis.  相似文献   

4.
mdf-1/MAD1 is a conserved spindle assembly checkpoint component that is essential for the survival of Caenorhabditis elegans. Previously, using a dog-1(gk10)/FANCJ mutator strain, we have isolated a suppressor of mdf-1(gk2) sterility. This suppressor, named such-4,was demonstrated to be a tandem duplication that contained 62 putative protein coding genes. We apply here the recently developed Mos1-mediated single-copy insertion (MosSCI) method to study this copy number variation (CNV) in C. elegans and show that such-4 is caused by the duplication of a single gene cyb-3, illustrating the power of MosSCI-mediated single-gene duplications for uncovering gene dosage genetic interactions. Importantly, we show here, for the first time, that doubling the CYB-3 (Cyclin B3) dosage suppresses sterility in the absence of the essential spindle assembly checkpoint component MDF-1 without causing a delay in the onset of anaphase.  相似文献   

5.
The spindle-assembly checkpoint in space and time   总被引:13,自引:0,他引:13  
In eukaryotes, the spindle-assembly checkpoint (SAC) is a ubiquitous safety device that ensures the fidelity of chromosome segregation in mitosis. The SAC prevents chromosome mis-segregation and aneuploidy, and its dysfunction is implicated in tumorigenesis. Recent molecular analyses have begun to shed light on the complex interaction of the checkpoint proteins with kinetochores--structures that mediate the binding of spindle microtubules to chromosomes in mitosis. These studies are finally starting to reveal the mechanisms of checkpoint activation and silencing during mitotic progression.  相似文献   

6.
The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation by delaying anaphase onset until all sister kinetochores are attached to bipolar spindles. An RNA interference screen for synthetic genetic interactors with a conserved SAC gene, san-1/MAD3, identified spdl-1, a Caenorhabditis elegans homologue of Spindly. SPDL-1 protein localizes to the kinetochore from prometaphase to metaphase, and this depends on KNL-1, a highly conserved kinetochore protein, and CZW-1/ZW10, a component of the ROD–ZW10–ZWILCH complex. In two-cell–stage embryos harboring abnormal monopolar spindles, SPDL-1 is required to induce the SAC-dependent mitotic delay and localizes the SAC protein MDF-1/MAD1 to the kinetochore facing away from the spindle pole. In addition, SPDL-1 coimmunoprecipitates with MDF-1/MAD1 in vivo. These results suggest that SPDL-1 functions in a kinetochore receptor of MDF-1/MAD1 to induce SAC function.  相似文献   

7.
Spindle assembly checkpoint (SAC) ensures genome stability by delaying anaphase onset until all the chromosomes have achieved proper spindle attachment. Once correct attachment has been achieved, SAC must be silenced. In the absence of mdf-1/MAD1, an essential SAC component, Caenorhabditis elegans cannot propagate beyond 3 generations. Previously, in a dog-1(gk10)/FANCJ mutator background, we isolated a suppressor of mdf-1(gk2) sterility (such-4) which allowed indefinite propagation in the absence of MDF-1. We showed that such-4 is a Cyclin B3 (cyb-3) duplication. Here we analyze mdf-1 such-4; dog-1, which we propagated for 470 generations, with freezing of samples for long time storage at F170 and F270. Phenotypic analysis of this strain revealed additional suppression of sterility in the absence of MDF-1, beyond the effects of such-4. We applied oligonucleotide array Comparative Genomic Hybridization (oaCGH) and whole genome sequencing (WGS) and identified a further amplification of cyb-3 (triplication) and a new missense mutation in dynein heavy chain (dhc-1). We show that dhc-1(dot168) suppresses the mdf-1(gk2), and is the second cloned suppressor, next to cyb-3 duplication, that does not cause a delay in anaphase onset. We also show that amplification of cyb-3 and dhc-1(dot168) cooperate to increase fitness in the absence of MDF-1.  相似文献   

8.
Accurate chromosome segregation depends on biorientation, whereby sister chromatids attach to microtubules from opposite spindle poles. The spindle-assembly checkpoint is a surveillance mechanism in eukaryotes that inhibits anaphase until all chromosomes have bioriented. In present models, the recruitment of the spindle-assembly checkpoint protein Mad2, through Mad1, to non-bioriented kinetochores is needed to stop cell-cycle progression. However, it is unknown whether Mad1-Mad2 targeting to kinetochores is sufficient to block anaphase. Furthermore, it is unclear whether regulators of biorientation (for example, Aurora kinases) have checkpoint functions downstream of Mad1-Mad2 recruitment or whether they act upstream to quench the primary error signal. Here, we engineered a Mad1 construct that localizes to bioriented kinetochores. We show that the kinetochore localization of Mad1 is sufficient for a metaphase arrest that depends on Mad1-Mad2 binding. By uncoupling the checkpoint from its primary error signal, we show that Aurora, Mps1 and BubR1 kinases, but not Polo-like kinase, are needed to maintain checkpoint arrest when Mad1 is present on kinetochores. Together, our data suggest a model in which the biorientation errors, which recruit Mad1-Mad2 to kinetochores, may be signalled not only through Mad2 template dynamics, but also through the activity of widely conserved kinases, to ensure the fidelity of cell division.  相似文献   

9.
Flies without a spindle checkpoint   总被引:1,自引:0,他引:1  
Mad2 has a key role in the spindle-assembly checkpoint (SAC) - the mechanism delaying anaphase onset until all chromosomes correctly attach to the spindle. Here, we show that unlike every other reported case of SAC inactivation in metazoans, mad2-null Drosophila are viable and fertile, and their cells almost always divide correctly despite having no SAC and an accelerated 'clock', which is caused by premature degradation of cyclin B. Mitosis in Drosophila does not need the SAC because correct chromosome attachment is achieved very rapidly, before even the cell lacking Mad2 can initiate anaphase. Experimentally reducing spindle-assembly efficiency renders the cells Mad2-dependent. In fact, the robustness of the SAC may generally mask minor mitotic defects of mutations affecting spindle function. The reported lethality of other Drosophila SAC mutations may be explained by their multifunctionality, and thus the 'checkpoint' phenotypes previously ascribed to these mutations should be considered the consequence of eliminating both the checkpoint and a second mitotic function.  相似文献   

10.
Tarailo M  Kitagawa R  Rose AM 《Genetics》2007,175(4):1665-1679
The spindle assembly checkpoint (SAC) governs the timing of metaphase-to-anaphase transition and is essential for genome stability. The Caenorhabditis elegans mutant strain gk2 carries a deletion within the mdf-1/MAD1 gene that results in death of the homozygous strain after two or three generations. Here we describe 11 suppressors of the mdf-1(gk2) lethality, 10 identified in an ethyl methanesulfonate (EMS) mutagenesis screen and 1 isolated using the dog-1(gk10) (deletions of guanine-rich DNA) mutator strain. Using time-lapse imaging of early embryonic cells and germline mitotic division, we demonstrate that there are two classes of suppressors. Eight suppressors compensate for the loss of the checkpoint by delaying mitotic progression, which coincides with securin (IFY-1/Pds1) accumulation; three suppressors have normal IFY-1/Pds1 levels and normal anaphase onset. Furthermore, in the class of suppressors with delayed mitotic progression, we have identified four alleles of known suppressors emb-30/APC4 and fzy-1/CDC20, which are components of the anaphase-promoting complex/cyclosome (APC/C). In addition, we have identified another APC/C component capable of bypassing the checkpoint requirement that has not previously been described in C. elegans. The such-1/APC5-like mutation, h1960, significantly delays anaphase onset both in germline and in early embryonic cells.  相似文献   

11.
12.
Tarailo M  Tarailo S  Rose AM 《Genetics》2007,177(4):2525-2530
Here, we report genetic interactions with mdf-1(gk2)/MAD1 in Caenorhabditis elegans. Nine are evolutionarily conserved or phenotypic "interologs" and two are novel enhancers, hcp-1 and bub-3. We show that HCP-1 and HCP-2, the two CENP-F-related proteins, recently implicated in the spindle assembly checkpoint (SAC) function, do not have identical functions, since hcp-1(RNAi), but not hcp-2(RNAi), enhances the lethality of the SAC mutants.  相似文献   

13.

Background

The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi) to identify genes synthetic lethal with the viable san-1(ok1580) deletion mutant.

Results

The san-1(ok1580) animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580) embryos is significantly reduced when HCP-1 (CENP-F homologue), MDF-1 (MAD-1 homologue), MDF-2 (MAD-2 homologue) or BUB-3 (predicted BUB-3 homologue) are reduced by RNAi. Interestingly, the viability of san-1(ok1580) embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580);hcp-1(RNAi) embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging). Several of the san-1(ok1580);hcp-1(RNAi) animals displayed abnormal kinetochore (detected by MPM-2) and microtubule structure. The survival of mdf-2(RNAi);hcp-1(RNAi) embryos but not bub-3(RNAi);hcp-1(RNAi) embryos was also compromised. Finally, we found that san-1(ok1580) and bub-3(RNAi), but not hcp-1(RNAi) embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein.

Conclusion

Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580);hcp-1(RNAi) animals had a severe viability defect whereas in the san-1(ok1580);hcp-2(RNAi) and san-1(ok1580);hcp-2(ok1757) animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.  相似文献   

14.
The proteolysis of key regulatory proteins is thought to control progress through mitosis. Here we analyse cyclin B1 degradation in real time and find that it begins as soon as the last chromosome aligns on the metaphase plate, just after the spindle-assembly checkpoint is inactivated. At this point, cyclin B1 staining disappears from the spindle poles and from the chromosomes. Cyclin B1 destruction can subsequently be inactivated throughout metaphase if the spindle checkpoint is reimposed, and this correlates with the reappearance of cyclin B1 on the spindle poles and the chromosomes. These results provide a temporal and spatial link between the spindle-assembly checkpoint and ubiquitin-mediated proteolysis.  相似文献   

15.
Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)–microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT–MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs was enhanced by CLASP2 phosphorylation on S1234. This was specifically required to stabilize KT–MT attachments important for chromosome alignment and to coordinate KT and non-KT MT dynamics necessary to maintain spindle bipolarity. CLASP2 C-terminal phosphorylation by Plk1 was also required for chromosome alignment and timely satisfaction of the SAC. We propose that Cdk1 and Plk1 mediate a fine CLASP2 “phospho-switch” that temporally regulates KT–MT attachment stability.  相似文献   

16.
Kinetochores use the spindle checkpoint to delay anaphase onset until all chromosomes have formed bipolar attachments to spindle microtubules. Here, we use controlled monopolar spindle formation to systematically define the requirements for spindle checkpoint signaling in the Caenorhabditis elegans embryo. The results, when interpreted in light of kinetochore assembly epistasis analysis, indicate that checkpoint activation is coordinately directed by the NDC-80 complex, the Rod/Zwilch/Zw10 complex, and BUB-1—three components independently targeted to the outer kinetochore by the scaffold protein KNL-1. These components orchestrate the integration of a core Mad1MDF-1/Mad2MDF-2-based signal, with a largely independent Mad3SAN-1/BUB-3 pathway. Evidence for independence comes from the fact that subtly elevating Mad2MDF-2 levels bypasses the requirement for BUB-3 and Mad3SAN-1 in kinetochore-dependent checkpoint activation. Mad3SAN-1 does not accumulate at unattached kinetochores and BUB-3 kinetochore localization is independent of Mad2MDF-2. We discuss the rationale for a bipartite checkpoint mechanism in which a core Mad1MDF-1/Mad2MDF-2 signal generated at kinetochores is integrated with a separate cytoplasmic Mad3SAN-1/BUB-3–based pathway.  相似文献   

17.
The perpetuation of the species' genomic identity strongly depends on the accurate maintenance of chromosome number through countless cell generations. The synchronous entry and progression of all chromosomes through anaphase is fundamental for the quality of mitosis and is guaranteed by error prevention and correction mechanisms that ultimately certify the bipolar attachment of chromosomes to the mitotic spindle, the uniform distribution of forces amongst different chromosomes, and the simultaneity of sister-chromatid separation. The existence of a kinetochore-attachment checkpoint (KAC; also known as spindle-assembly checkpoint) ensures a delay in anaphase onset if any kinetochore remains unattached or devoid of a proper complement of microtubules. The stochastic nature of microtubule-kinetochore interactions predisposes the mitotic process to mistakes, but different molecular players cooperate by detecting and releasing incorrect attachments and thus delaying checkpoint satisfaction. Conversely, correct microtubule-kinetochore interactions become selectively stabilized. Once anaphase onset is triggered, the segregation velocities achieved by each chromosome should be similar, so that none of the chromosomes is lagged behind. This reflects the uniformity of forces acting on the different chromosomes and relies on a conspicuous mitotic spindle property known as microtubule poleward flux. Importantly, not all incorrect attachments are detected and resolved prior to anaphase leading to asynchronous chromosome segregation, but several mechanisms are in place to prevent aneuploidy. One of these mechanisms relies on anaphase spindle forces and another, known as the NoCut checkpoint, delays cell cleavage during cytokinesis until chromosomes can free the spindle mid-region. In this review we discuss how these different mechanisms act in concert to ensure the fidelity of the mitotic process.  相似文献   

18.
Chromosome segregation in mitosis is orchestrated by protein kinase signaling cascades. A biochemical cascade named spindle checkpoint ensures the spatial and temporal order of chromosome segregation during mitosis. Here we report that spindle checkpoint protein MAD1 interacts with NEK2A, a human orthologue of the Aspergillus nidulans NIMA kinase. MAD1 interacts with NEK2A in vitro and in vivo via a leucine zipper-containing domain located at the C terminus of MAD1. Like MAD1, NEK2A is localized to HeLa cell kinetochore of mitotic cells. Elimination of NEK2A by small interfering RNA does not arrest cells in mitosis but causes aberrant premature chromosome segregation. NEK2A is required for MAD2 but not MAD1, BUB1, and HEC1 to associate with kinetochores. These NEK2A-eliminated or -suppressed cells display a chromosome bridge phenotype with sister chromatid inter-connected. Moreover, loss of NEK2A impairs mitotic checkpoint signaling in response to spindle damage by nocodazole, which affected mitotic escape and led to generation of cells with multiple nuclei. Our data demonstrate that NEK2A is a kinetochore-associated protein kinase essential for faithful chromosome segregation. We hypothesize that NEK2A links MAD2 molecular dynamics to spindle checkpoint signaling.  相似文献   

19.
Although cells can exit mitotic block aberrantly by mitotic slippage, they are prevented from becoming tetraploids by a p53-dependent postmitotic checkpoint. Intriguingly, disruption of the spindle-assembly checkpoint also compromises the postmitotic checkpoint. The precise mechanism of the interplay between these two pivotal checkpoints is not known. We found that after prolonged nocodazole exposure, the postmitotic checkpoint was facilitated by p53. We demonstrated that although disruption of the mitotic block by a MAD2-binding protein promoted slippage, it did not influence the activation of p53. Both p53 and its downstream target p21(CIP1/WAF1) were activated at the same rate irrespective of whether the spindle-assembly checkpoint was enforced or not. The accelerated S phase entry, as reflected by the premature accumulation of cyclin E relative to the activation of p21(CIP1/WAF1), is the reason for the uncoupling of the postmitotic checkpoint. In support of this hypothesis, forced premature mitotic exit with a specific CDK1 inhibitor triggered DNA replication without affecting the kinetics of p53 activation. Finally, replication after checkpoint bypass was boosted by elevating the level of cyclin E. These observations indicate that disruption of the spindle-assembly checkpoint does not directly influence p53 activation, but the shortening of the mitotic arrest allows cyclin E-CDK2 to be activated before the accumulation of p21(CIP1/WAF1). These data underscore the critical relationship between the spindle-assembly checkpoint and the postmitotic checkpoint in safeguarding chromosomal stability.  相似文献   

20.
Hauf S 《Cell》2008,132(2):181-182
The protein kinase Mps1, a crucial regulator of the spindle-assembly checkpoint, now turns out to be essential for correcting errors in chromosome attachment (Jelluma et al., 2008). Mps1 exerts this effect by regulating the activity of the Aurora B kinase through phosphorylation of its partner protein Borealin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号