首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene trapping in embryonic stem (ES) cells was used to identify a novel gene involved in mouse development. In order to screen trapped ES cell lines for the presence of developmentally regulated genes, an in vitro differentiation test was used. One of the G418 resistant cell lines, in conjunction with the lacZ reporter gene, showed differential expression patterns under differentiated and undifferentiated conditions. The gene trap insertion in this cell line was germ-line transmitted and X-gal staining was used to assess the expression pattern of lacZ in embryos heterozygous for the trapped allele. The reporter gene's expression was detected in commissural neurons in the developing spinal cord, suggesting functions for the trapped gene in mouse neural development. Structural analysis of the cDNA revealed that this trapped gene, named PRDC (protein related to DAN and cerberus), is a novel gene that encodes a putative secretory protein consisting of 168 amino acid residues. PRDC gene product shows limited similarities to the products of DAN (differential screening-selected gene aberrative in neuroblastoma) and cerberus . (DAN is a possible tumor-suppressor for neuroblastoma in human. Cerberus can induce an ectopic head in Xenopus embryos when ectopically expressed.) These three gene products may form a novel family of signaling molecules.  相似文献   

2.
3.
The hematopoietic zinc finger protein, Hzf, is induced in response to genotoxic and oncogenic stress. The Hzf protein is encoded by a p53-responsive gene, and its overexpression, either in cells retaining or lacking functional 53, halts their proliferation. Enforced expression of Hzf led to the appearance of tetraploid cells with supernumerary centrosomes and, ultimately, to cell death. Eliminating Hzf mRNA expression by use of short hairpin (sh) RNAs had no overt effect on unstressed cells but inhibited the maintenance of G2 phase arrest following ionizing radiation (IR), thereby sensitizing cells to DNA damage. Canonical p53-responsive gene products such as p21Cip1 and Mdm2 were induced by IR in cells treated with Hzf shRNA. However, the reduction in the level of Hzf protein was accompanied by increased polyubiquitination and turnover of p21Cip1, an inhibitor of cyclin-dependent kinases whose expression contributes to maintaining the duration of the G2 checkpoint in cells that have sustained DNA damage. Thus, two p53-inducible gene products, Hzf and p21Cip1, act concomitantly to enforce the G(2) checkpoint.  相似文献   

4.
High-throughput gene trapping is a random approach for inducing insertional mutations across the mouse genome. This approach uses gene trap vectors that simultaneously inactivate and report the expression of the trapped gene at the insertion site, and provide a DNA tag for the rapid identification of the disrupted gene. Gene trapping has been used by both public and private institutions to produce libraries of embryonic stem (ES) cells harboring mutations in single genes. Presently, approximately 66% of the protein coding genes in the mouse genome have been disrupted by gene trap insertions. Among these, however, genes encoding signal peptides or transmembrane domains (secretory genes) are underrepresented because they are not susceptible to conventional trapping methods. Here, we describe a high-throughput gene trapping strategy that effectively targets secretory genes. We used this strategy to assemble a library of ES cells harboring mutations in 716 unique secretory genes, of which 61% were not trapped by conventional trapping, indicating that the two strategies are complementary. The trapped ES cell lines, which can be ordered from the International Gene Trap Consortium (http://www.genetrap.org), are freely available to the scientific community.  相似文献   

5.
Here we describe a novel gene trap protocol to screen for target genes that are regulated during inductive events in undifferentiated and differentiated mouse embryonic stem cells. This approach integrates several features that allows in vitro screening of large numbers of gene trap clones prior to generating lines of mutant mice. Moreover, targets of spatially and temporally restricted signaling pathways can be analyzed by screening undifferentiated ES cells versus ES cells differentiated into embryoid bodies. We employed this protocol to screen 1920 gene trap lines to identify targets and mediators of signaling through three growth factors of the TGFbeta superfamily--BMP2, activin and nodal. We identified two genes that are induced by BMP2 in a differentiation-dependent manner. One of the genes encodes for Chondroitin-4-sulfotransferase and displays a highly specific temporal and spatial expression pattern during mouse embryogenesis. These results demonstrate the feasibility of a high-throughput gene trap approach as a means to identify mediators and targets of multiple growth factor signaling pathways that function during different stages of development.  相似文献   

6.
We report here the identification and characterization of a novel paired-like homeobox-containing gene (Ehox). This gene, identified in embryonic stem (ES) cells, is differentially expressed during in vitro ES cell differentiation. We have assessed Ehox function using the ES cell in vitro differentiation system. This has involved molecular and biological analyses of the effects of sense or antisense Ehox expression (using episomal vectors) on ES cell differentiation. Analysis of antisense Ehox-expressing ES cells indicates that they are unable to express marker genes associated with hematopoietic, endothelial, or cardiac differentiation following removal of leukemia inhibitory factor. In contrast, overexpression of Ehox using the sense construct accelerated the appearance of these differentiation markers. ES cell self-renewal and differentiation assays reveal that inhibition of Ehox activity results in the maintenance of a stem cell phenotype in limiting concentrations of leukemia inhibitory factor and the almost complete impairment of the cardiomyocyte differentiation capacity of these cells. We therefore conclude that Ehox is a novel homeobox-containing gene that is essential for the earliest stages of murine ES cell differentiation.  相似文献   

7.
The Drosophila strawberry (sty) locus was isolated by P-element insertion mutagenesis in a screen for mutations affecting eye development. Analysis of the mutant phenotype and the putative expression pattern of the sty gene suggested that it has multiple functions. Mutations in the sty gene lead to irregular spacing of ommatidia, an increase in the number of photoreceptor cells, as well as abnormal axonal projections to the lamina and disrupted structure of the optic lobes in the adult fly. The sty mutation also causes abnormal head involution, a change in a number of sensilla in the antennomaxillary complex in the embryonic stage and abnormal morphogenesis of the maxillary palp and wings in later stages. We examined the presumptive expression of the sty gene during development by histochemical staining for lacZ expression from enhancer trap elements inserted within the sty gene. During embryogenesis, expression of lacZ showed a segmental pattern in the ectoderm and in the nervous system. In the eye imaginal discs, lacZ was expressed in photoreceptor cells beginning a few rows posterior to the morphogenetic furrow. The lacZ was also expressed in the wing disc. In the adult, lacZ was expressed in the retina and lamina. We cloned the sty gene by P-element tagging and found that it encodes a putative secreted protein containing a cysteine-rich region similar to the epidermal growth factor (EGF) repeat. On the basis of the loss of functional phenotype, the expression pattern and the predicted structure of its product, we propose that sty encodes a diffusible protein acting as a signal involved in lateral inhibition within the developing nervous system and also as a factor involved either directly or indirectly in axonal guidance and optic lobe development.  相似文献   

8.
9.
The murine embryonal stem (ES) cell virus (MESV) can express transgenes from the long terminal repeat (LTR) promoter/enhancer in undifferentiated ES cells, but expression is turned off upon differentiation to embryoid bodies (EBs) and hematopoietic cells in vitro. We examined whether a human immunodeficiency virus type 1-based lentivirus vector pseudotyped with the vesicular stomatitis virus G protein (VSV-G) could transduce ES cells efficiently and express the green fluorescent protein (GFP) transgene from an internal phosphoglycerate kinase (PGK) promoter throughout development to hematopoietic cells in vitro. An oncoretrovirus vector containing the MESV LTR and the GFP gene was used for comparison. Fluorescence-activated cell sorting analysis of transduced CCE ES cells showed 99.8 and 86.7% GPF-expressing ES cells in the VSV-G-pseudotyped lentivirus (multiplicity of infection [MOI] = 59)- and oncoretrovirus (MOI = 590)-transduced cells, respectively. Therefore, VSV-G pseudotyping of lentiviral and oncoretrovirus vectors leads to efficient transduction of ES cells. Lentivirus vector integration was verified in the ES cell colonies by Southern blot analysis. When the transduced ES cells were differentiated in vitro, expression from the oncoretrovirus LTR was severely reduced or extinct in day 6 EBs and ES cell-derived hematopoietic colonies. In contrast, many lentivirus-transduced colonies, expressing the GFP gene in the undifferentiated state, continued to express the transgene throughout in vitro development to EBs at day 6, and many continued to express in cells derived from hematopoietic colonies. This experimental system can be used to analyze lentivirus vector design for optimal expression in hematopoietic cells and for gain-of-function experiments during ES cell development in vitro.  相似文献   

10.
Gene trapping is used to introduce insertional mutations into genes of mouse embryonic stem cells (ESCs). It is performed with gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA tag for rapid identification of the disrupted gene. Gene traps have been employed worldwide to assemble libraries of mouse ESC lines harboring mutations in single genes, which can be used to make mutant mice. However, most of the employed gene trap vectors require gene expression for reporting a gene trap event and therefore genes that are poorly expressed may be under-represented in the existing libraries. To address this problem, we have developed a novel class of gene trap vectors that can induce gene expression at insertion sites, thereby bypassing the problem of intrinsic poor expression. We show here that the insertion of the osteopontin enhancer into several conventional gene trap vectors significantly increases the gene trapping efficiency in high-throughput screens and facilitates the recovery of poorly expressed genes.  相似文献   

11.
Embryonic stem (ES) cells have the potential to develop into various cell lineages including hemangioblasts (Flk1+), a common progenitor for hematopoietic and vascular endothelial cells. Previous studies indicate that Flk1+ cells, a marker for hemangioblast, can be derived from ES cell and that Flk1+ can be differentiated into hematopoietic or endothelial cells depending on culture conditions. We developed an improved in vitro system to generate Flk1+-enriched cultures from mouse ES cells and used this in vitro system to study the role of Wnt signalling in early endothelial progenitor cells. We determined the expression of the Wnt and Frizzled genes in Flk1+ cells derived from mouse ES cells. RT-PCR analyses identified significantly higher expression of non-canonical Wnt5a and Wnt11 genes in Flk1+ cells compared to Flk1- cells. In contrast, expression of canonical Wnt3a gene was reduced in Flk1+ cells. In addition, Frizzled2, Frizzled5 and Frizzled7 genes were also expressed at a higher level in Flk1+ cells. The differential expression of Wnt and Frizzled genes in Flk1+ cells provides a novel insight into the role of non-canonical Wnt signalling in vascular endothelial fate determination.  相似文献   

12.
A novel protein LUZP with 3 leucine zipper motifs at its amino terminus is predominantly expressed in the adult brain. A modified gene targeting approach was employed in an attempt to establish in vitro and in vivo models in which Luzp is knock-out (KO) for phenotype assessment and a reporter gene lacZ is knock-in (KI) for tracing its expression. We report in this study the molecular cloning of the Luzp gene, its targeting vector construction and Luzp-KO/lacZ-KI embryonic stem (ES) clone selection. Since LUZP is also expressed in ES cells, the possibility of embryonic lethality cannot be excluded when attempting to establish Luzp-null mutant mice. We have therefore examined the development of homozygous Luzp-KO/lacZ-KI clones in nude mice. Tissue types derived from all three embryonic germ layers were observed in teratomas developed in nude mice. In situ X-gal staining further revealed restricted expression of LUZP in neural lineage cells.  相似文献   

13.
14.
A gene trap approach to identify genes that control development   总被引:3,自引:0,他引:3  
One methodology called gene trap represents a versatile strategy by which murine genes that control developmental events can be captured and identified with corresponding mutants produced at the same time. Gene trap methodology has been developed and several genes and their mutants have been analyzed, but almost all of the genes reported are those already known or murine homologs of other species. In this study, the efficiency of the gene trap methodology was improved and a novel mutant mouse strain named jumonji established which displayed an intriguing defect. Homozygous fetal mice died in utero and a significant proportion of the homozygotes showed abnormal groove formation on the neural plate and a defect in neural tube closure with a mixed genetic background of 129/Ola and BALB/c. The trapped gene believed to be responsible for these phenotypes encodes a novel nuclear protein. The results reveal that the gene trap approach can identify unknown interesting genes in murine development. The gene trap strategy, however, has several problems, the greatest of which is the difficulty in prescreening embryonic stem (ES) cells for interesting trapped genes. Recent studies are solving this problem and show that the prescreening of ES cells for genes with several characteristics is possible.  相似文献   

15.
We employed a gene trap approach to identify genes expressed in stomatal guard cells of Arabidopsis thaliana . We examined patterns of reporter gene expression in approximately 20 000 gene trap lines, and recovered five lines with exclusive or preferential expression in stomata. The screen yielded two insertions in annotated genes, encoding the CYTOCHROME P450 86A2 (CYP86A2) mono-oxygenase, and the PLEIOTROPIC DRUG RESISTANCE 3 (AtPDR3) transporter. Expression of the trapped genes in guard cells was confirmed by RT-PCR experiments in purified stomata. Examination of homozygous mutant lines revealed that abscisic acid (ABA)-induced stomatal closure was impaired in the atpdr3 mutant. In three lines, insertions occurred outside transcribed units. Expression analysis of the genes surrounding the trapping inserts identified two genes selectively expressed in guard cells, corresponding to a PP2C PROTEIN PHOSPHATASE and an unknown expressed protein gene. Statistical analyses of the chromosomal regions tagged by the gene trap insertions revealed an over-represented [A/T]AAAG motif, previously described as an essential cis -active element for gene expression in stomata. The lines described in this work identify novel genes involved in the modulation of stomatal activity, provide useful markers for the study of developmental pathways in guard cells, and are a valuable source of guard cell-specific promoters.  相似文献   

16.
Gene trapping in embryonic stem (ES) cells is a proven method for large‐scale random insertional mutagenesis in the mouse genome. We have established an exchangeable gene trap system, in which a reporter gene can be exchanged for any other DNA of interest through Cre/mutant lox‐mediated recombination. We isolated trap clones, analyzed trapped genes, and constructed the database for Exchangeable Gene Trap Clones (EGTC) [ http://egtc.jp ]. The number of registered ES cell lines was 1162 on 31 August 2013. We also established 454 mouse lines from trap ES clones and deposited them in the mouse embryo bank at the Center for Animal Resources and Development, Kumamoto University, Japan. The EGTC database is the most extensive academic resource for gene‐trap mouse lines. Because we used a promoter‐trap strategy, all trapped genes were expressed in ES cells. To understand the general characteristics of the trapped genes in the EGTC library, we used Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway analysis and found that the EGTC ES clones covered a broad range of pathways. We also used Gene Ontology (GO) classification data provided by Mouse Genome Informatics (MGI) to compare the functional distribution of genes in each GO term between trapped genes in the EGTC mouse lines and total genes annotated in MGI. We found the functional distributions for the trapped genes in the EGTC mouse lines and for the RefSeq genes for the whole mouse genome were similar, indicating that the EGTC mouse lines had trapped a wide range of mouse genes.  相似文献   

17.
A novel triple fusion reporter system for use in gene trap mutagenesis   总被引:1,自引:0,他引:1  
Gene trapping is an insertional mutagenesis strategy that allows for simultaneous gene identification and mutation in embryonic stem (ES) cells. Gene trap vectors both disrupt coding sequence and report on the genes' endogenous expression. The most popular gene trap reporter to date combines beta-galactosidase expression with neomycin resistance in a fusion protein known as beta-geo. Here we describe a refinement to this reporter that also incorporates real time fluorescent readouts. We have constructed a series of gene trap vectors incorporating a novel tripartite fusion protein consisting of EGFP, beta-galactosidase, and the neomycin or hygromycin resistance activities. Our results indicate that these triple fusions can function efficiently as reporters of endogenous trapped gene expression and subcellular localization. We show that these fusion proteins constitute versatile gene trap reporters whose activity can be detected in real time by fluorescence and in fixed tissue with a sensitive enzymatic activity.  相似文献   

18.
19.
20.
Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, and direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and, (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes (alpha-globin, betaH-1 globin, beta-major globin, epsilon -globin, and zeta-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, epsilon-globin, gamma-globin, betaH1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured in media containing dexamethasone showed a down-regulation of GATA-3 and an up-regulation of GATA-1, Flk-1, and Epo-R in comparison to the two other cytokines and growth factor combinations containing media. The secondary differentiation also showed an enhanced production of erythrocytic precursors in dexamethasone containing media in comparison to that in the control media. Our results indicate that dexamethasone can prove to be an effective agent which can be employed to enhance differentiation towards erythrocytic progenitors from ES cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号