首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present a detailed study on the formation of neighboring β-strands during the folding of a monomeric integral membrane protein of the β-barrel type. β-Strand and β-barrel formations were investigated for the eight-stranded transmembrane domain of outer membrane protein A (OmpA) with single-tryptophan (W), single-cysteine (C) OmpA mutants. Based on the OmpA structure, W and C were introduced in two neighboring β-strands oriented toward the hydrocarbon core of the membrane. Replaced residue pairs were closer to either the periplasmic turns (named cis-side) or the outer loops (named trans-side) of the strand. WnCm OmpA mutants containing W at position n and C at position m along the polypeptide chain were labeled at the C by a nitroxyl spin label, which is a short-range fluorescence quencher. To monitor the association of neighboring β-strands, we determined the proximity between fluorescent W and labeled C in OmpA folding experiments by intramolecular fluorescence quenching. Formation of native β-strand contacts in folding experiments required the lipid membrane. Residues in the trans-side of strands β1, β2, and β3, represented by mutants W15C351β2, trans) and W57C353β2, trans), reached close proximity prior to residues in the N(β1)- and C(β8)-terminal strands as examined for mutants W15C1621β8, trans) and W7C1701β8, cis). Tryptophan and cysteine converged slightly faster in W15C1621β8, trans) than in W7C1701β8, cis). The last folding step was observed for residues at the cis-ends of strands β1 and β2 for the mutant W7C431β2, cis). The data also demonstrate that the neighboring β-strands associate upon insertion into the hydrophobic core of the lipid bilayer.  相似文献   

2.
3.
Biotinylated gramicidins are an important component of the AMBRI® “ion channel switch™” biosensor. These gramicidin A (gA) analogues have a biotin attached to the C-terminus of gA via a number of aminocaproyl linker groups (X). The structure of gA5XB has been determined in deuterated sodium dodecyl sulfate micelles and is similar to native gA and other modified gA analogues. The biotin and aminocaproyl groups were mobile and located in the aqueous phase and when avidin was added, NMR and MS studies showed that gA5XB bound more effectively to avidin than gA2XB. The length and flexibility of the linker appears to be important for biotin–avidin binding and, in the AMBRI® biosensor, gA5XB is a more effective gated ion channel than gA2XB. The conformation and dynamics of the aminocaproyl linker groups were investigated using 2H solid-state NMR. Deuterated aminocaproyl linkers were coupled to gA and incorporated into oriented bilayers in order to analyse the order and dynamics of the aminocaproyl linker. The small 2H splittings and the T 1 relaxation times indicated that the aminocaproyl linker is undergoing fast rotation in phospholipid bilayers. Native d 4 -gA as well as d 4 -gA2XB, where the ethanolamine has been deuterated, were also incorporated into oriented bilayers. Solid-state 2H NMR data showed that the addition of the linker group restricted the mobility of the ethanolamine. However, these modifications to the C-terminus of gA did not interfere with ion channel function and clarify how the biotinylated gA analogues perform in the lipid bilayer as part of the AMBRI® biosensor.Australian Peptide Conference Issue.  相似文献   

4.
5.
The binding of the Syrian hamster prion protein, SHaPrP(90-231), to model lipid membranes was investigated by tryptophan fluorescence. Membranes composed of negatively charged or zwitterionic lipids, and raft-like membranes containing dipalmitoylphosphatidylcholine(1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), cholesterol and sphingomyelin, were investigated. It was found that SHaPrP(90-231) binds to negatively charged lipid membranes and raft-like membranes. Binding of PrP to negatively charged lipid membranes involves both electrostatic and hydrophobic lipid-protein interactions and results in partial insertion of PrP into the lipid bilayer. This membrane-inserted conformation of PrP is richer in beta-sheet structure and has a disruptive effect on the integrity of the lipid bilayer, leading to total release of vesicle contents. In contrast, the binding of PrP to raft-like membranes is driven by hydrophobic lipid-protein interactions and induces the formation of alpha-helical structure. This conformation of PrP with a high content of alpha-helix is formed only at pH 7 and does not destabilize the lipid bilayer. Our findings support the view that an interaction of PrP with lipid membranes could play a role in PrP conversion.  相似文献   

6.
Although the interactions of sulfur mustard (HD) with nucleic acids and proteins have been well studied, the toxic interactions with the membrane matrix and specially the phospholipid bilayer have so far been poorly investigated. We have used several NMR techniques to study these interactions: 1H NMR to observe the localization of HD in membranes of small unilamellar vesicles (SUV) of lecithin; 31P NMR to verify the hypothesis of pore formation in membranes of large unilamellar vesicles (LUV); and pseudo solid state 31P and 2H NMR to analyze the dynamic consequences of the presence of HD in multilayer dispersions of dimyristoylphosphatidylcholine (DMPC). Immediate and late modifications of the DMPC–HD complexes have been observed at the macroscopic and microscopic levels. After intoxication, HD is spontaneously incorporated into the membrane and locates at the level of the chain methylene groups. This incorporation occurs without formation of pores in the membrane. The presence of HD in the phospholipid dispersion differentially increases the membrane fluidity depending upon the level involved. Weak at the superficial level (phosphate group), this increase is dose-dependent on progression into the membrane. This increase is related to a lowering of transition temperature when measured at the chain level. Macroscopically, HD induces dose- and time-dependent modifications of the DMPC–HD complexes, leading to the formation of an optically transparent gel. This gel formation is confirmed at a microscopic level, where all structures disappear after intoxication. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
Potassium channels are a diverse class of transmembrane proteins that are responsible for diffusion of potassium ion across cell membranes. The lack of large quantities of these proteins from natural sources, is a major hindrance in their structural characterization using biophysical techniques. Synthetic peptide fragments corresponding to functionally important domains of these proteins provide an attractive approach towards characterizing the structural organization of these ion-channels. Conformational properties of peptides from three different potassium channels (Shaker, ROMK1 and minK) have been characterized in aqueous media, organic solvents and in phospholipid membranes. Techniques used for these studies include FTIR, CD and 2D-NMR spectroscopy. FTIR spectroscopy has been a particularly valuable tool for characterizing the folding of the ion-channel peptides in phospholipid membranes; the three different types of potassium channels all share a common transmembrane folding pattern that is composed of a predominantly -helical structure. There is no evidence to suggest the presence of any significant -sheet structure. These results are in excellent agreement with the crystal structure of a bacterial potassium channel (Doyle, D. A. et al. (1998) Science 280:69–77), and suggest that all potassium channel proteins may share a common folding motif where the ion-channel structure is constructed entirely from -helices.  相似文献   

9.
Current-voltage curves for DIDS-insensitive Cl conductance have been determined in human red blood cells from five donors. Currents were estimated from the rate of cell shrinkage using flow cytometry and differential laser light scattering. Membrane potentials were estimated from the extracellular pH of unbuffered suspensions using the proton ionophore FCCP. The width of the Gaussian distribution of cell volumes remained invariant during cell shrinkage, indicating a homogeneous Cl conductance among the cells. After pretreatment for 30 min with DIDS, net effluxes of K+ and Cl were induced by valinomycin and were measured in the continued presence of DIDS; inhibition was maximal at ∼65% above 1 μM DIDS at both 25°C and 37°C. The nonlinear current-voltage curves for DIDS-insensitive net Cl effluxes, induced by valinomycin or gramicidin at varied [K+]o, were compared with predictions based on (1) the theory of electrodiffusion, (2) a single barrier model, (3) single occupancy, multiple barrier models, and (4) a voltage-gated mechanism. Electrodiffusion precisely describes the relationship between the measured transmembrane voltage and [K+]o. Under our experimental conditions (pH 7.5, 23°C, 1–3 μM valinomycin or 60 ng/ml gramicidin, 1.2% hematocrit), the constant field permeability ratio PK/PCl is 74 ± 9 with 10 μM DIDS, corresponding to 73% inhibition of PCl. Fitting the constant field current-voltage equation to the measured Cl currents yields P Cl = 0.13 h−1 with DIDS, compared to 0.49 h−1 without DIDS, in good agreement with most previous studies. The inward rectifying DIDS-insensitive Cl current, however, is inconsistent with electrodiffusion and with certain single-occupancy multiple barrier models. The data are well described either by a single barrier located near the center of the transmembrane electric field, or, alternatively, by a voltage-gated channel mechanism according to which the maximal conductance is 0.055 ± 0.005 S/g Hb, half the channels are open at −27 ± 2 mV, and the equivalent gating charge is −1.2 ± 0.3.  相似文献   

10.
Template-assembled proteins (TASPs) comprising 4 peptide blocks, each of either the natural melittin sequence (melittin-TASP) or of a truncated melittin sequence (amino acids 6-26, melittin6-26-TASP), C-terminally linked to a (linear or cyclic) 10-amino acid template were synthesized and characterized, structurally by CD, by fluorescence spectroscopy, and by monolayer experiments, and functionally, by electrical conductance measurements on planar bilayers and release experiments on dye-loaded vesicles. Melittin-TASP and the truncated analogue preferentially adopt alpha-helical structures in methanol (56% and 52%, respectively) as in lipid membranes. Unlike in methanol, the melittin-TASP self-aggregates in water. On an air-water interface, the differently sized molecules can be self-assembled and compressed to a compact structure with a molecular area of around 600 A2, compatible with a 4-helix bundle preferentially oriented perpendicular to the interface. The proteins reveal a strong affinity for lipid membranes. A partition coefficient of 1.5 x 10(9) M-1 was evaluated from changes of the Trp fluorescence spectra of the TASP in water and in the lipid bilayer. In planar lipid bilayers, TASP molecules are able to form defined ion channels, exhibiting a small single-channel conductance of 7 pS (in 1 M NaCl). With increasing protein concentration in the lipid bilayer, additional, larger conductance states of up to 1 nS were observed. These states are likely to be formed by aggregated TASP structures as inferred from a strongly voltage-dependent channel activity on membranes of large area. In this respect, melittin-TASP reveals channel features of the native peptide, but with a considerably lower variation in the size of the channel states. Compared to the free peptide, template-assembled melittin has a much higher membrane activity: it is about 100 times more effective in channel formation and 20 times more effective in releasing dye molecules from lipid vesicles. This demonstrates that the lytic properties are not solely related to channel formation.  相似文献   

11.
12.
The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2−/− fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment.  相似文献   

13.
The role of the outermost transmembrane α-helix in both the maturation and function of the prokaryotic pentameric ligand-gated ion channels, GLIC and ELIC, was examined by Ala scanning mutagenesis, deletion mutations, and mutant cycle analyses. Ala mutations at the M4-M1/M3 interface lead to loss-of-function phenotypes in GLIC, with the largest negative effects occurring near the M4 C terminus. In particular, two aromatic residues at the M4 C terminus form a network of π-π and/or cation-π interactions with residues on M3 and the β6-β7 loop that is essential for both maturation and function. M4-M1/M3 interactions appear to be optimized in GLIC with even subtle structural changes at this interface leading to detrimental effects. In contrast, mutations along the M4-M1/M3 interface of ELIC typically lead to gain-of-function phenotypes, suggesting that these interactions in ELIC are not optimized for channel function. In addition, no cluster of interacting residues involving the M4 C terminus, M3, and the β6-β7 loop was found, suggesting that the M4 C terminus plays little role in ELIC maturation or function. This study shows that M4 makes distinct contributions to the maturation and gating of these two closely related homologs, suggesting that GLIC and ELIC exhibit divergent features of channel function.  相似文献   

14.
Ward AB  Guvench O  Hills RD 《Proteins》2012,80(9):2178-2190
Coarse-grained (CG) modeling has proven effective for simulating lipid bilayer dynamics on scales of biological interest. Modeling the dynamics of flexible membrane proteins within the bilayer, on the other hand, poses a considerable challenge due to the complexity of the folding or conformational landscape. In the present work, the multiscale coarse-graining method is applied to atomistic peptide-lipid "soup" simulations to develop a general set of CG protein-lipid interaction potentials. The reduced model was constructed to be compatible with recent solvent-free CG models developed for protein-protein folding and lipid-lipid model bilayer interactions. The utility of the force field was demonstrated by molecular dynamics simulation of the MsbA ABC transporter in a mixed DOPC/DOPE bilayer. An elastic network was parameterized to restrain the MsbA dimer in its open, closed and hydrolysis intermediate conformations and its impact on domain flexibility was examined. Conformational stability enabled long-time dynamics simulation of MsbA freely diffusing in a 25 nm membrane patch. Three-dimensional density analysis revealed that a shell of weakly bound "annular lipids" solvate the membrane accessible surface of MsbA and its internal substrate-binding chamber. The annular lipid binding modes, along with local perturbations in head group structure, are a function of the orientation of grooves formed between transmembrane helices and may influence the alternating access mechanism of substrate entry and translocation.  相似文献   

15.
The Cl-/H+ exchange-transporter CLC-ec1 mediates stoichiometric transmembrane exchange of two Cl- ions for one proton. A conserved tyrosine residue, Y445, coordinates one of the bound Cl- ions visible in the structure of this protein and is located near the intersection of the Cl- and H+ pathways. Mutants of this tyrosine were scrutinized for effects on the coupled transport of Cl- and H+ determined electrophysiologically and on protein structure determined crystallographically. Despite the strong conservation of Y445 in the CLC family, substitution of F or W at this position preserves wild-type transport behavior. Substitution by A, E, or H, however, produces uncoupled proteins with robust Cl- transport but greatly impaired movement of H+. The obligatory 2 Cl-/1 H+ stoichiometry is thus lost in these mutants. The structures of all the mutants are essentially identical to wild-type, but apparent anion occupancy in the Cl- binding region correlates with functional H+ coupling. In particular, as determined by anomalous diffraction in crystals grown in Br-, an electrophysiologically competent Cl- analogue, the well-coupled transporters show strong Br- electron density at the "inner" and "central" Cl- binding sites. However, in the uncoupled mutants, Br- density is absent at the central site, while still present at the inner site. An additional mutant, Y445L, is intermediate in both functional and structural features. This mutant clearly exchanges H+ for Cl-, but at a reduced H+-to-Cl- ratio; likewise, both the central and inner sites are occupied by Br-, but the central site shows lower Br- density than in wild-type (or in Y445F,W). The correlation between proton coupling and central-site occupancy argues that halide binding to the central transport site somehow facilitates movement of H+, a synergism that is not readily understood in terms of alternating-site antiport schemes.  相似文献   

16.
We have simulated two conformations of the fusion domain of influenza hemagglutinin (HA) within explicit water, salt, and heterogeneous lipid bilayers composed of POPC:POPG (4:1). Each conformation has seven different starting points in which the initial peptide structure is the same for each conformation, but the location across the membrane normal and lipid arrangement around the peptide are varied, giving a combined total simulation time of 140 ns. For the HA5 conformation (primary structure from recent NMR spectroscopy at pH = 5), the peptide exhibits a stable and less kinked structure in the lipid bilayer compared to that from the NMR studies. The relative fusogenic behavior of the different conformations has been investigated by calculation of the relative free energy of insertion into the hydrophobic region of lipid bilayer as a function of the depth of immersion. For the HA7 conformations (primary structure from recent NMR spectroscopy at pH = 7.4), while the N-terminal helix preserves its initial structure, the flexible C-terminal chain produces a transient helical motif inside the lipid bilayer. This conformational change is pH-independent, and is closely related to the peptide insertion into the lipid bilayer.  相似文献   

17.
Summary The complete structure determination of a polypeptide in a lipid bilayer environment is demonstrated built solely upon orientational constraints derived from solid-state NMR observations. Such constraints are obtained from isotopically labeled samples uniformly aligned with respect to the B0 field. Each observation constrains the molecular frame with respect to B0 and the bilayer normal, which are arranged to be parallel. These constraints are not only very precise (a few tenths of a degree), but also very accurate. This is clearly demonstrated as the back bone structure is assembled sequentially and the i to i+6 hydrogen bonds in this structure of the gramicidin channel are shown on average to be within 0.5 Å of ideal geometry. Similarly, the side chains are assembled independently and in a radial direction from the backbone. The lack of considerable atomic overlap between side chains also demonstrates the accuracy of the constraints. Through this complete structure, solid-state NMR is demonstrated as an approach for determining three-dimensional macromolecular structure.  相似文献   

18.
There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp67–Glu71–Asp80 inactivation triad within the channel structure and its bearing on the selectivity filter.  相似文献   

19.
The concept of chemiosmotic systems arises from the pioneering work of Peter Mitchell on two fronts. One is concerned with the mechanisms by which molecules are transported across membranes which are generally barriers to such transport. These mechanisms are inevitably molecular, and are now yielding their secrets to a combination of structural protein chemistry and molecular biology. The other front is more physiological, and explores the functional relationships between metabolism and transport. Nevertheless, the two fronts form a continuum of mutally related structure and function. Chemiosmotic systems provide a hierarchy of complexity, starting from say a uniporter reconstituted in a chemically defined bilayer, and proceeding to greater complexity in mitochondria, chloroplasts, eukaryotic and prokaryotic cell membranes, and multicellular systems. Their relationship to medicine is profound, because they provide many opportunities for therapeutic intervention. In this paper I present an overview of chemiosmotic systems at different levels of complexity, both molecular and biological, of their involvements in pathology, and of possible pharmacological treatment or prevention of disease.  相似文献   

20.
The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号