共查询到20条相似文献,搜索用时 15 毫秒
1.
Some aspects of vulnerability to cyclopoid predation of zooplankton prey individuals 总被引:2,自引:0,他引:2
Kennedy Roche 《Hydrobiologia》1990,198(1):153-162
The predation cycle (encounter, attack, capture and ingestion or survival) by adult female Acanthocyclops robustus was observed for four crustacean prey types. The chief defense of A. robustus nauplii was escape response ability, reducing the probability of capture after attack, and, most likely, attack after encounter. The most important feature reducing the vulnerability of Ceriodaphnia and Daphnia species was large body size, decreasing the probability of capture after attack. Escape response ability and carapace strength/integrity further reduced vulnerability. Carapace strength/integrity was an effective defense for Bosmina longirostris, reducing the probability of ingestion after capture.The predation cycle by juvenile A. robustus was examined for three prey types. All three prey types seemed to be readily attacked. Due to their possession of loricae, Keratella cochlearis and Pompholyx sulcata were seldom eaten, while the illoricate Synchaeta kitina was highly vulnerable.Egg vulnerability after attack by the adult female predator was analysed. The eggs of Brachionus calyciflorus, Pompholyx sulcata and Filinia longiseta were rarely eaten, although the adults of the latter were usually ingested (thus causing the eggs to float free). Out of three attacks recorded on Keratella Quadrata, the eggs were eaten (or destroyed) twice.Handling times by the adult female predator were measured for a number of prey types. The shortest mean handling time was for Synchaeta kitina (less than one second), while the longest was on Ceriodaphnia species (716 seconds). Results were quite variable. Handling time was significantly positively related to prey body volume, while exoskeletal strength/integrity also increased this time. No effect of temperature on handling time was found for Synchaeta pectinata or Polyarthra major between 15 and 26.5 °C. 相似文献
2.
Kennedy Roche 《Hydrobiologia》1990,198(1):163-183
Spatial overlap between Acanthocyclops robustus, with special emphasis on the adult females, and other zooplankton in one basin of a shallow (approximate depth of 2 m) eutrophic lake was studied.Horizontal distribution patterns were analysed on two dates. On both dates, most taxa examined showed large-scale patchiness between the three sections of the lake basin (approximate length of 1.2 km). Similarly, most taxa, with the important exception of the adult female Acanthocyclops robustus, were significantly patchily distributed on the small-scale (i.e. within sections). However, the intensity of such patchiness was, in general, relatively low. There was no consistent evidence of aggregation by the adult females or copepodites and adult males (the latter two were considered together) of the predator in such small-scale prey patches.Diurnal vertical distribution patterns were studied on two 24–25 hour periods. The first period was characterized by calm weather. Adult female, and perhaps male, Acanthocyclops robustus, Chydorus sphaericus, Bosmina Coregoni, Keratella cochlearis, Asplanchna species, Polyarthra vulgaris and Pompholyx sulcata seemed to show diurnal migration patterns, while seven other taxa showed consistent preferences for particular depths. Only copepod nauplii and Daphnia species were approximately evenly distributed. Negative correlations were found between the vertical distributions of the adult female predator and seven of the seventeen potential prey recognized.The first half of the second period was characterised by strong winds which abated during the second half. Most zooplankton taxa showed inconsistent heterogeneous vertical distributions or were homogeneously distributed with vertical heterogeneity developing towards the end of the period. Only Bosmina longirostris and Daphnia species seemed to show vertical migration patterns. Thus, no consistent vertical segregation between predator and prey was detected. 相似文献
3.
Size-dependent predation by snakes: selective foraging or differential prey vulnerability? 总被引:1,自引:0,他引:1
I staged replicate encounters between unrestrained lizards andsnakes in outdoor enclosures to examine size-dependent predationwithin the common garden skink (Lampropholis guichenoti). Yellow-facedwhip snakes (Demansia psammophis) forage widely for activeprey and most often consumed large skinks, whereas death adders(Acanthophis antarcticus) ambush active prey and most oftenconsumed small skinks. Small-eyed snakes (Rhinoplocephalusnigrescens) forage widely for inactive prey and consumed bothsmall and large skinks equally often. Differential predationmay reflect active choice by the predator, differential preyvulnerability, or both. To test for active choice, I presentedforaging snakes with an inert small lizard versus an inertlarge lizard. They did not actively select lizards of a particularbody size. To test for differential prey vulnerability, I quantifiedvariation between small and large lizards in behavior thatis important for determining the outcome of predatorprey
interactions. Snakes did not differentiate between integumentarychemicals from small and large lizards. Large lizards tendto flee from approaching predators, thereby eliciting attackby the visually oriented whip snakes. Small lizards were moremobile than large lizards and therefore more likely to passby sedentary death adders. Additionally, small skinks were more
effectively lured by this sit-and-wait species and less likelyto avoid its first capture attempt. In contrast, overnightretreat site selection (not body size) determined a lizard'schances of being detected by small-eyed snakes. Patterns ofsize-dependent predation by elapid snakes may arise not becauseof active choice but as a function of species-specific predatortactics and prey behavior. 相似文献
4.
We tested the outcome of predation by juvenile roach on the calanoid copepod Eudiaptomus gracilis and the similar sized cyclopoid copepod Cyclops vicinus in laboratory experiments with mixed and single-prey. When ovigerous females and adult non-ovigerous females of the calanoid copepod and the cyclopoid copepod were offered in equal numbers to the fish in the mixed-prey experiments, the cyclopoid copepods were significantly more heavily preyed upon than the calanoids. Between 14 and 16 females of the cyclopoid copepod and only between 2 and 4 calanoids had been consumed after the observation period of two hours. The single-prey experiments revealed that the conspicuousness of the calanoid vs the cyclopoid depended on sex and gravidity. Ovigerous females of the cyclopoid copepod were slightly earlier detected by the fish than ovigerous females of the calanoid, probably a result of the highly visible egg-sacs carried by the cyclopoid females. Females without eggs and males of the cyclopoid copepod were recognized later by the predator than females without eggs or males of the calanoid, probably a result of the different behaviours of the different copepod taxa. Cyclopoids frequently congregated near the aquarium bottom while calanoids were closer to the water surface where they were better visible. The calanoid copepod could better escape the fish's attacks than the cyclopoid copepod. Egg-bearing females of both the calanoid and the cyclopoid copepod could significantly better escape than non-ovigerous females or males. Probably ovigerous females react very early to water disturbances caused by the predator. Activity measurements showed that the cyclopoid copepod displayed 2 to 4 times more hops per time unit than the calanoid. Probably the high number of jerky movements displayed by the cyclopoid attracted attention of the predator and contributed to its greater vulnerability. 相似文献
5.
In the shallow and eutrophic subtropical aquatic ecosystems, which it generally inhabits, the omnivorous copepod Mesocyclops thermocyclopoides encounters a wide variety of animal prey types including ciliates, rotifers, and cladocerans. We studied prey selectivity in laboratory-reared adult females of this species given a choice of (i) prey types belonging to different taxa (ciliates, rotifers, cladocerans, and cyclopoid nauplii), and (ii) different prey species within a taxonomic group differing in body size, morphology or behaviour. We also tested the effect of different proportions of prey species on its selectivity. Prey type proportion had no significant effect on selectivity of the copepod, nor was there any evidence of switching based on the relative abundance of prey. Among the ciliate prey species tested, the largest species, Stylonychia mytilus was positively selected regardless of its relative abundance, while the smallest, S. notophora was selected only when its density was higher. Offered a choice of three species of a brachionid rotifer differing in size, the copepod selected the largest of them, Brachionus calyciflorus, and avoided the smallest B. angularis. The evasive rotifer Hexarthra mira was also avoided. When prey choice included three cladoceran species Daphnia similoides, Moina macrocopa and Ceriodaphnia cornuta, the copepod selected the intermediate-sized M. macrocopa regardless of the abundance of the other two species. Although it fed on Mesocyclops nauplii when there was no choice, M. thermocyclopoides avoided them when alternative food was available. In a multispecies prey choice test, the copepod selected predominantly the rotifer B. calyciflorus and the cladoceran M. macrocopa. We suggest that the prey selectivity patterns shown by M. thermocyclopoides are adaptive in that they lead to ingestion of the most profitable prey. 相似文献
6.
In many shallow, eutrophic subtropical ponds, brachionid rotifers are common prey of the predatory copepod Mesocyclops thermocyclopoides. The predatory rotifer Asplanchna intermedia, which is itself a potential prey of the copepod, also feeds preferentially on brachionids. We studied in the laboratory the population dynamics of two mutually competing prey species, Brachionus angularis and B. calyciflorus, in the presence of the two predators A. intermedia and M. thermocyclopoides. The experimental design included separate population dynamics studies with one prey–one predator, two prey–one predator, one prey–two predator, and two prey–two predator systems. These combinations were compared with controls, in which both the prey species (B. angularis and B. calyciflorus) were grown separately and in combination with each other. In the absence of any predator, B. angularis generally eliminated the larger B. calyciflorus. Selective predation by the copepod allowed B. calyciflorus to persist longer in competition with B. angularis. Feeding by M. thermocyclopoides on A. intermedia reduced the predation pressure on B. calyciflorus. However, given enough time, the cyclopoid copepod was able to eliminate both the brachionids as well as the predatory Asplanchna. 相似文献
7.
MICHAEL JEFFRIES 《Freshwater Biology》1988,19(1):49-56
SUMMARY. 1. Many examples of predator-prey interactions from freshwaters suggest that apparent predator preferences result more from the relative vulnerabilities of prey than any positive choice by the predator.
2. The rank order of vulnerability of seven invertebrate prey to nine invertebrate predators was measured in the laboratory. The ranks were used as a measure of relative vulnerability.
3. The vulnerability of individuals of Simocephalus vetulus (Muller) (Crustacea: Cladocera) to predation by Enallagma cyathigerum (Char-pentier) (Insecta: Odonata) and Notonecta glauca L, (Insecta: Hemiptera) was investigated in the presence of alternative prey of differing relative vulnerabilities, based on the rank order measures.
4. With E. cyathigerum , vulnerability of individual S. vetulus depended greatly on the relative vulnerability of other prey types available. With N. glauca the intrinsic defences of S. vetulus were very effective.
5. The importance of relative prey vulnerability is discussed with particular reference to small habitats with marked annual species turnover. 相似文献
2. The rank order of vulnerability of seven invertebrate prey to nine invertebrate predators was measured in the laboratory. The ranks were used as a measure of relative vulnerability.
3. The vulnerability of individuals of Simocephalus vetulus (Muller) (Crustacea: Cladocera) to predation by Enallagma cyathigerum (Char-pentier) (Insecta: Odonata) and Notonecta glauca L, (Insecta: Hemiptera) was investigated in the presence of alternative prey of differing relative vulnerabilities, based on the rank order measures.
4. With E. cyathigerum , vulnerability of individual S. vetulus depended greatly on the relative vulnerability of other prey types available. With N. glauca the intrinsic defences of S. vetulus were very effective.
5. The importance of relative prey vulnerability is discussed with particular reference to small habitats with marked annual species turnover. 相似文献
8.
Sacrificial males: the potential role of copulation and predation in contributing to copepod sex‐skewed ratios 下载免费PDF全文
Ryan J. Wasserman Mark Weston Olaf L. F. Weyl P. William Froneman Rebecca J. Welch Tim J. F. Vink Tatenda Dalu 《Oikos》2018,127(7):970-980
Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems. 相似文献
9.
Dennis L. Murray 《The Journal of animal ecology》2002,71(4):614-625
10.
We propose and analyze a simple mathematical model for susceptible prey (S)–infected prey (I)–predator (P) interaction, where the susceptible prey population (S) is infected directly from external sources as well as through contact with infected class (I) and the predator completely avoids consuming the infected prey. The model is analyzed to obtain different thresholds of the key parameters under which the system exhibits stability around the biologically feasible equilibria. Through numerical simulations we display the effects of external infection and the infection through contact on the system dynamics in the absence as well as in the presence of the predator. We compare the system dynamics when infection occurs only through contact, with that when it occurs through contact and external sources. Our analysis demonstrates that under a disease-selective predation, stability and oscillations of the system is determined by two key parameters: the external infection rate and the force of infection through contact. Due to the introduction of external infection, the predator and the prey population show limit-cycle oscillations over a range parametric values. We suggest that while predicting the dynamics of such an eco-epidemiological system, the modes of infection and the infection rates might be carefully investigated. 相似文献
11.
SUMMARY 1. We analysed the vulnerability of a number of cladoceran species ( Bosmina longirostris , B. fatalis , Diaphanosoma brachyurum , Ceriodaphnia reticulata , Daphnia ambigua and D. pulex ) to predation by Mesocyclops leuckarti in the laboratory.
2. The prey species represented a wide range of body size, morphology, and swimming behaviour. To compare vulnerability, we measured the efficiency of capture and ingestion of each prey species by Mesocyclops . We also measured the rate at which prey were damaged in attacks by Mesocyclops .
3. Mesocyclops preyed effectively on Diaphanosoma and small juvenile Ceriodaphnia but not on Bosmina or Daphnia . Observations suggested that various defence mechanisms, including protruding structures and swimming behaviour and speed, are important in determining prey vulnerability.
4. The body size of Daphnia and Ceriodaphnia seems to be important, because larger animals were better able to escape Mesocyclops attacks. Attacks by Mesocyclops often caused fatal damage, however, even to large Daphnia . 相似文献
2. The prey species represented a wide range of body size, morphology, and swimming behaviour. To compare vulnerability, we measured the efficiency of capture and ingestion of each prey species by Mesocyclops . We also measured the rate at which prey were damaged in attacks by Mesocyclops .
3. Mesocyclops preyed effectively on Diaphanosoma and small juvenile Ceriodaphnia but not on Bosmina or Daphnia . Observations suggested that various defence mechanisms, including protruding structures and swimming behaviour and speed, are important in determining prey vulnerability.
4. The body size of Daphnia and Ceriodaphnia seems to be important, because larger animals were better able to escape Mesocyclops attacks. Attacks by Mesocyclops often caused fatal damage, however, even to large Daphnia . 相似文献
12.
Freshwater cladocerans and rotifers were used as prey to study functional response and prey selection by adult females of Chirocephalus diaphanus under laboratory conditions. For functional response studies, we offered three rotifer species (Brachionus calyciflorus, B. patulus and Euchlanis dilatata) and three cladoceran species (Alona rectangula, Ceriodaphnia dubia and Moina macrocopa) at various densities ranging from 0.5 to 16 ind. ml–1. We found increased zooplankton consumption with increasing prey density but beyond 4 ind ml–1 cladocerans and 8 ind. ml–1 rotifers, the number of animals eaten plateaued. In general, C. diaphanus consumed fewer large prey (cladocerans) and many more smaller zooplankton (rotifers). For prey selection experiments, we used B. calyciflrous, B. patulus, C. dubia and M. macrocopa, offered at the ratio of two rotifers: one cladoceran and at three prey densities (total zooplankton numbers: 3, 6 and 12 ind. ml–1). Prey selectivity patterns followed the functional response trends. In general, regardless of prey types, with an increase in the available zooplankton, there was an increase in the number of prey consumed. At any given prey density, C. diaphanus consumed higher numbers of rotifers than cladocerans. Among the prey offered, B. patulus and M. macrocopa were positively selected. Results are discussed in light of possible control of zooplankton by anostracans in temporary ponds. 相似文献
13.
Coexistence of the predatory cyclopoids Acanthocyclops robustus (Sars) and Mesocyclops leuckarti (Claus) in a small eutrophic lake 总被引:1,自引:0,他引:1
Gerhard Maier 《Hydrobiologia》1990,198(1):185-203
The coexistence of two common species of predatory cyclopoid copepods, Acanthocyclops robustus and Mesocyclops leuckarti, in a small, eutrophic lake was studied. Both species are of similar size, inhabit the same water layers and have similar seasonal occurrence. A. robustus shows faster embryonic and postembryonic development and produces bigger clutches. Ingestion rates of A. robustus are higher than in M. leuckarti, especially with large prey types and low temperatures. Females of A. robustus are heavily preyed upon by fish. This predation pressure leads to extremely skewed sex ratios, which are unfavourable to population growth. A. robustus is therefore, on balance, favoured in productive lakes. Dominance over M. leuckarti is, however, less clear in warmer years. 相似文献
14.
Time-intensive sampling was used to study minnow Phoxinus phoxinus density and foraging activity in the littoral area of Lake Lentua at a time of high vendace Coregonus albula larval abundance. Minnow activity and foraging during the late spring-early summer period at low temperatures was found to be mainly nocturnal and quite consistent with features reported in the literature, with the exception of feeding on vendace larvae. The absence of the latter finding from previous studies may be due to previous seasonally limited daytime samplings. The temporal or spatial scale of sampling is decisive when studying foraging on food animals with a brief period of vulnerability and seasonal phenology. However, minnows in Lake Lentua seemed to prefer Bosmina longispina whenever available and low B. longispina density during the first weeks after the break-up of ice directed minnow predation towards the vendace larvae. Estimated gross predation values showed that the minnow has the potential to become a remarkable predator on fish larvae. Slight variations in the vernal timing of the vendace hatching and larval development with respect to minnow activity, both of which are obviously temperature related, may be critical to vendace larval survival in the nearshore zone. However, the predation on the larvae is probably a strong factor only for a short period and the survival of the vendace larvae may be more related to the availability of suitably sized food resources than to predation by the minnow. 相似文献
15.
16.
Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning. 相似文献
17.
The rotifer Euchlanis dilatata lives associated with submerged vegetation in the littoral zone of freshwater lakes and ponds. I assessed habitat-specific predation susceptibilities for this rotifer in the presence of three aquatic macrophytes (Myriophyllum exalbescens, Elodea canadensis, and Ceratophyllum demersum) and two predators (damselfly nymphs — Enallagma carunculata; and cnidarians — Hydra). Rotifer survival was greatest on Myriophyllum in the presence of both predators. Conversely, the presence of the other macrophyte species actually increase rotifer suspectibility to predation by damselfly nymphs. I also manipulated plant structural complexity. As predicted, decreasing the relative complexity of each plant resulted in lower rotifer survival. 相似文献
18.
Mortality by moonlight: predation risk and the snowshoe hare 总被引:1,自引:0,他引:1
Griffin Paul C.; Griffin Suzanne C.; Waroquiers Carl; Mills L. Scott 《Behavioral ecology》2005,16(5):938-944
Optimal behavior theory suggests that prey animals will reduceactivity during intermittent periods when elevated predationrisk outweighs the fitness benefits of activity. Specifically,the predation risk allocation hypothesis predicts that preyactivity should decrease dramatically at times of high predationrisk if there is high temporal variation in predation risk butshould remain relatively uniform when temporal variation inpredation risk is low. To test these predictions we examinedthe seasonably variable response of snowshoe hares to moonlightand predation risk. Unlike studies finding uniform avoidanceof moonlight in small mammals, we find that moonlight avoidanceis seasonal and corresponds to seasonal variation in moonlightintensity. We radio-collared 177 wild snowshoe hares to estimatepredation rates as a measure of risk and used movement distancesfrom a sample of those animals as a measure of activity. Inthe snowy season, 5-day periods around full moons had 2.5 timesmore predation than around new moons, but that ratio of theincreased predation rate was only 1.8 in the snow-free season.There was no significant increase in use of habitats with morehiding cover during full moons. Snowshoe hares' nightly movementdistances decreased during high-risk full-moon periods in thesnowy season but did not change according to moon phase in thesnow-free season. These results are consistent with the predationrisk allocation hypothesis. 相似文献
19.
1. Interactions were observed between three morphotypes of the predatory rotifer Asplanchna silvestrii and six different prey (Brachionus plicatilis, B. rotundiformis, B. pterodinoides, B. satanicus, Hexarthra jenkinae and copepod nauplii) to understand the differences in feeding abilities among morphotypes that may have led to the evolution of this predator polymorphism. The outcome of predation events was affected significantly, both by predator morphotype and prey type. Predator morphotypes also interacted differently with different prey types. 2. The two smaller morphotypes, the saccate and the cruciform, responded similarly to prey overall, except that the smallest morphotype (saccate) was unable to ingest the most mobile prey (nauplii) and less able to ingest relatively large prey (B. plicatilis). The largest morphotype, the campanulate, had the highest encounter rate with prey, but the lowest probability of attack after encounter, so that it consumed far fewer prey per feeding bout than did the smaller morphotypes. This may have been because campanulates prefer larger prey than used in this study. 3. Highly mobile prey (H. jenkinae and copepod nauplii) were much less susceptible to predation than the less mobile Brachionus species. While evasiveness reduced attacks by saccates and cruciforms, campanulates did not have a significantly lower attack rate on H. jenkinae and copepod nauplii than on less evasive prey. Large body size moderately defended B. plicatilis against ingestion by saccates only. The short-spined B. satanicus was the only prey that was rejected after capture, resulting in lower ingestion probabilities for B. satanicus than other brachionid prey. 相似文献
20.
Rebecca K. Nagy Nancy A. Schellhorn Myron P. Zalucki 《Journal of Applied Entomology》2020,144(5):407-416
Arthropod predators and parasitoids support the health and functioning of the world's ecosystems, most notably by supplying biological control services to agricultural landscapes. Quantifying the impact that these organisms have on their prey can be challenging, as direct observation and measurement of arthropod predation is difficult. The use of sentinel prey is one method to measure predator impact; however, despite widespread use, few studies have compared predation on different prey types within a single experiment. This study evaluated the predation rates on four sentinel prey items in grass and wheat fields in south-east Queensland, Australia. Attack rates on live and dead Helicoverpa armigera eggs, and dead H. armigera larvae and artificial plasticine larvae, were compared and the predators that were attracted to each prey type were documented with the use of field cameras. There was no significant difference in predation rates between sentinel eggs, while dead larvae were significantly more attacked than artificial larvae. Prey were attacked by a diverse range of predators, including ants, beetles, various nymph and juvenile insects and small mammals. Different predators were active in grass and crop fields, with predator activity peaking around dawn and dusk. The same trends were observed within and between the two habitats studied, providing a measure of confidence in the sentinel prey method. A range of different sentinel prey types could be suitable for use in most comparative studies; however, each prey type has its own benefits and limitations, and these should be carefully evaluated to determine which is most suitable to address the research questions. 相似文献