共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1−/−; Spry2−/− embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1−/−; Spry2−/− embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1−/−; Spry2−/− embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center. 相似文献
2.
3.
4.
Satomi Nadanaka Hiroshi Kitagawa 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(4):791-799
Background
Heparan sulfate proteoglycans are ubiquitously expressed on cell surfaces and in extracellular matrices, and are engaged in heparin-binding growth factor-related signal transduction. Thus, changes in the amounts, structures, and chain lengths of heparan sulfate have profound effects on aspects of cell growth controlled by heparin-binding growth factors such as FGF2. Exostosin glycosyltransferases (EXT1, EXT2, EXTL1, EXTL2, and EXTL3) control heparan sulfate biosynthesis, and the expression levels of their genes regulate the amounts, chain lengths, and sulfation patterns of heparan sulfate. Unlike EXT1, EXT2, and EXTL3, EXTL2 functions chain termination of heparan sulfate. Here, we examined the importance of EXTL2 in FGF2-dependent signaling.Methods
We investigated heparan sulfate biosynthesis and FGF2 signaling using four cell lines, EXT1-deficient cells, EXT2-, EXTL2-, or EXTL3-knockdown cells, by HPLC, qRT-PCR, flow cytometry, and western blotting.Results
Reduced expression of either EXT1, EXT2, or EXTL3 decreased heparan sulfate biosynthesis, and consequently suppressed the FGF2-dependent proliferation of mouse L fibroblasts. In contrast, although knockdown of EXTL2 increased the amounts of heparan sulfate, FGF2-dependent proliferation was significantly inhibited because the increased heparan sulfate enhanced the incorporation of FGF2 into the cells.Conclusions
EXTL2 controls FGF2 signaling through regulation of heparan sulfate biosynthesis in a manner distinct from that of other exostosins.General significance
This study provides new insights into the regulatory mechanisms of FGF2 signaling by EXTL2. 相似文献5.
FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. 总被引:12,自引:0,他引:12
Although FGF signaling plays an integral role in the migration and patterning of mesoderm at gastrulation, the mechanism and downstream targets of FGF activity have remained elusive. Here, we demonstrate that FGFR1 orchestrates the epithelial to mesenchymal transition and morphogenesis of mesoderm at the primitive streak by controlling Snail and E-cadherin expression. Furthermore, we show that FGFR1 functions in mesoderm cell fate specification by positively regulating Brachyury and Tbx6 expression. Finally, we provide evidence that the attenuation of Wnt3a signaling observed in Fgfr1 -/- embryos can be rescued by lowering E-cadherin levels. We propose that modulation of cytoplasmic beta-catenin levels, associated with FGF-induced downregulation of E-cadherin, provides a molecular link between FGF and Wnt signaling pathways at the streak. 相似文献
6.
Ben-Yaacov S Le Borgne R Abramson I Schweisguth F Schejter ED 《The Journal of cell biology》2001,152(1):1-13
Wiskott-Aldrich syndrome proteins, encoded by the Wiskott-Aldrich syndrome gene family, bridge signal transduction pathways and the microfilament-based cytoskeleton. Mutations in the Drosophila homologue, Wasp (Wsp), reveal an essential requirement for this gene in implementation of cell fate decisions during adult and embryonic sensory organ development. Phenotypic analysis of Wsp mutant animals demonstrates a bias towards neuronal differentiation, at the expense of other cell types, resulting from improper execution of the program of asymmetric cell divisions which underlie sensory organ development. Generation of two similar daughter cells after division of the sensory organ precursor cell constitutes a prominent defect in the Wsp sensory organ lineage. The asymmetric segregation of key elements such as Numb is unaffected during this division, despite the misassignment of cell fates. The requirement for Wsp extends to additional cell fate decisions in lineages of the embryonic central nervous system and mesoderm. The nature of the Wsp mutant phenotypes, coupled with genetic interaction studies, identifies an essential role for Wsp in lineage decisions mediated by the Notch signaling pathway. 相似文献
7.
The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye.
The argos gene encodes a protein that is required for viability and that regulates the determination of cells in the Drosophila eye. A developmental analysis of argos mutant eyes indicates that the mystery cells, which are usually nonneuronal, are transformed into extra photoreceptors, and that supernumerary cone cells and pigment cells are also recruited. Clonal analysis indicates that argos acts nonautonomously and can diffuse over the range of several cell diameters. Conceptual translation of the argos gene suggests that it encodes a secreted protein. 相似文献
8.
9.
10.
Lan K Nguyen David G Matallanas David Romano Boris N Kholodenko Walter Kolch 《Cell cycle (Georgetown, Tex.)》2015,14(2):189-199
How do biochemical signaling pathways generate biological specificity? This question is fundamental to modern biology, and its enigma has been accentuated by the discovery that most proteins in signaling networks serve multifunctional roles. An answer to this question may lie in analyzing network properties rather than individual traits of proteins in order to elucidate design principles of biochemical networks that enable biological decision-making. We discuss how this is achieved in the MST2/Hippo-Raf-1 signaling network with the help of mathematical modeling and model-based analysis, which showed that competing protein interactions with affinities controlled by dynamic protein modifications can function as Boolean computing devices that determine cell fate decisions. In addition, we discuss areas of interest for future research and highlight how systems approaches would be of benefit. 相似文献
11.
《Cell cycle (Georgetown, Tex.)》2013,12(2):189-199
Malignant melanoma is still poorly understood at the genomic level. Recently, a new technique for the high-resolution analysis of copy number changes named digital karyotyping was introduced. This approach is derived from SAGE (serial analysis of gene expression) and allows the detection of genomic amplifications and deletions, which are indicative of oncogenes and tumor suppressor genes. Four human melanoma cell lines were subjected to analysis by digital karyotyping. 828,780 genomic tags were generated and analysed quantitatively. Thereby, we identified a somatic, homozygous deletion of 570 kbp removing exons 3-29 of the dystrophin (DMD, Duchenne muscular dystrophy) gene. Analysis of DMD in 51 melanoma cell lines further revealed a homozygous and a hemizygous deletion in DMD. Furthermore, DMD mRNA expression was down-regulated with respect to primary melanocytes and accompanied by loss of DMD protein expression in 38 of 55 (69%) and a significant reduction in 10 of 55 (18%) melanoma cell lines. Sequence analysis of DMD cDNAs in 37 melanoma cell lines revealed 6 new sequence variants with a significantly lower frequency than previously described DMD polymorphisms, which may affect dystrophin function. Knock-down of DMD enhanced migration and invasion, whereas re-expression of DMD attenuated migration and induced a senescent phenotype in melanoma cell lines. Taken together, our results suggest that inactivation of DMD is involved in the pathogenesis of malignant melanoma. Loss of DMD may critically change the migratory and proliferative capacity of melanocytes. 相似文献
12.
Sensory epithelia of the inner ear require a coordinated alignment of hair cell stereociliary bundles as an essential element of mechanoreceptive function. Hair cell bundle alignment is mediated by core planar cell polarity (PCP) proteins, such as Vangl2, that localize asymmetrically to the circumference of the cell near its apical surface. During early phases of cell orientation in the chicken basilar papilla (BP), Vangl2 is present at supporting cell junctions that lie orthogonal to the polarity axis. Several days later, there is a striking shift in the Vangl2 pattern associated with hair cells that reorient towards the distal (apical) end of the organ. How the localization of PCP proteins transmits planar polarity information across the developing sensory epithelium remains unclear. To address this question, the normal asymmetric localization of Vangl2 was disrupted by overexpressing Vangl2 in clusters of cells. The BP was infected with replication-competent retrovirus encoding Vangl2 prior to hair cell differentiation. Virus-infected cells showed normal development of individual stereociliary bundles, indicating that asymmetry was established at the cellular level. Yet, bundles were misoriented in ears infected with Vangl2 virus but not Wnt5a virus. Notably, Vangl2 misexpression did not randomize bundle orientations but rather generated larger variations around a normal mean angle. Cell clusters with excess Vangl2 could induce non-autonomous polarity disruptions in wild-type neighboring cells. Furthermore, there appears to be a directional bias in the propagation of bundle misorientation that is towards the abneural edge of the epithelium. Finally, regional bundle reorientation was inhibited by Vangl2 overexpression. In conclusion, ectopic Vangl2 protein causes inaccurate local propagation of polarity information, and Vangl2 acts in a non-cell-autonomous fashion in the sensory system of vertebrates. 相似文献
13.
BACKGROUND: Roundabout (Robo) receptors and their ligand Slit are important regulators of axon guidance and cell migration. The development of Drosophila embryonic sense organs provides a neuronal migration paradigm where the in vivo roles of Slit and Robo can be assayed using genetics. RESULTS: Here we show that Slit-Robo signaling controls migration of Drosophila larval sensory neurons that are part of the Chordotonal (Cho) stretch receptor organs. We used live imaging to show that abdominal Cho organs normally migrate ventrally during development, whereas thoracic Cho organs do not. Robo2 overexpression in cis (in the sensory neurons) or in trans (on neighboring visceral mesoderm) transforms abdominal organs to a thoracic morphology and position by blocking migration, while loss of Slit-Robo signaling produces a reverse transformation in which thoracic organs migrate ectopically. Rescue and tissue-specific knockout experiments indicate that trans signaling by Robo2 contributes to the normal positioning of the thoracic Cho organs. The differential positioning of Cho organs between the thorax and abdomen is known to be regulated by Hox genes, and we show that the essential Hox cofactor Homothorax, represses Robo2 expression in the abdominal visceral mesoderm. CONCLUSIONS: Our results suggest that segment-specific neuronal migration patterns are directed through a novel signaling complex (the "Slit sandwich") in which Robo2 on the thoracic visceral mesoderm binds to Slit and presents it to Robo receptors on Cho neurons. The differential positioning of Cho organs between thorax and abdomen may be determined by Hox gene-mediated repression of robo2. 相似文献
14.
Asymmetric cell division plays a fundamental role in generating various types of embryonic cell. In ascidian embryos, asymmetric cell divisions occur in the vegetal hemisphere in a manner similar to those found in Caenorhabditis elegans. Early divisions in embryos of both species involve inductive events on a single mother cell that result in production of daughters with different cell fates. Here we show in the ascidian Halocynthia roretzi that polarity of muscle/mesenchyme mother precursors is determined solely by the direction from which the FGF9/16/20 signal is presented, a role similar to that of Wnt signaling in the EMS and T cell divisions in C. elegans. However, polarity of nerve cord/notochord mother precursors is determined by possible antagonistic action between the FGF signal and a signal from anterior ectoderm, providing a new mechanism underlying asymmetric cell division. The ectoderm signal suppresses MAPK activation and expression of Hr-FoxA, which encodes an intrinsic competence factor for notochord induction, in the nerve cord lineage. 相似文献
15.
Zernicka-Goetz M 《Seminars in cell & developmental biology》2004,15(5):563-572
A growing body of evidence indicates that although the early mouse embryo retains flexibility in responding to perturbations, its patterning is initiated at the earliest developmental stages. There are a few spatial cues that are able to influence the pattern of cleavage divisions: one of these lies in the vicinity of the previous meiotic division, the second is associated with the sperm entry and, related to this, the third is the cell shape. Furthermore, the first cleavage separates the zygote into two cells that tend to follow distinguishable fates: one contributes mainly to the embryonic part of the blastocyst, and the other to the abembryonic. The cumulative effect of the early asymmetries generated through cleavage might lead to asymmetric interactions between the first lineages of cells. This could influence development of patterning after implantation. These early polarity cues serve to bias patterning and not as definitive determinants. 相似文献
16.
Takeuchi Y Molyneaux K Runyan C Schaible K Wylie C 《Development (Cambridge, England)》2005,132(24):5399-5409
Fibroblast growth factor (FGF) signaling is thought to play a role in germ cell behavior. FGF2 has been reported to be a mitogen for primordial germ cells in vitro, whilst combinations of FGF2, steel factor and LIF cause cultured germ cells to transform into permanent lines of pluripotent cells resembling ES cells. However, the actual function of FGF signaling on the migrating germ cells in vivo is unknown. We show, by RT-PCR analysis of cDNA from purified E10.5 germ cells, that germ cells express two FGF receptors: Fgfr1-IIIc and Fgfr2-IIIb. Second, we show that FGF-mediated activation of the MAP kinase pathway occurs in germ cells during their migration, and thus they are potentially direct targets of FGF signaling. Third, we use cultured embryo slices in simple gain-of-function experiments, using FGF ligands, to show that FGF2, a ligand for FGFR1-IIIc, affects motility, whereas FGF7, a ligand for FGFR2-IIIb, affects germ cell numbers. Loss of function, using a specific inhibitor of FGF signaling, causes increased apoptosis and inhibition of cell shape change in the migrating germ cells. Lastly, we confirm in vivo the effects seen in slice cultures in vitro, by examining germ cell positions and numbers in embryos carrying a loss-of-function allele of FGFR2-IIIb. In FGFR2-IIIb(-/-) embryos, germ cell migration is unaffected, but the numbers of germ cells are significantly reduced. These data show that a major role of FGF signaling through FGFR2-IIIb is to control germ cell numbers. The data do not discriminate between direct and indirect effects of FGF signaling on germ cells, and both may be involved. 相似文献
17.
Hanafusa H Torii S Yasunaga T Matsumoto K Nishida E 《The Journal of biological chemistry》2004,279(22):22992-22995
Src homology 2-containing phosphotyrosine phosphatase (Shp2) functions as a positive effector in receptor tyrosine kinase (RTK) signaling immediately proximal to activated receptors. However, neither its physiological substrate(s) nor its mechanism of action in RTK signaling has been defined. In this study, we demonstrate that Sprouty (Spry) is a possible target of Shp2. Spry acts as a conserved inhibitor of RTK signaling, and tyrosine phosphorylation of Spry is indispensable for its inhibitory activity. Shp2 was able to dephosphorylate fibroblast growth factor receptor-induced phosphotyrosines on Spry both in vivo and in vitro. Shp2-mediated dephosphorylation of Spry resulted in dissociation of Spry from Grb2. Furthermore, Shp2 could reverse the inhibitory effect of Spry on FGF-induced neurite outgrowth and MAP kinase activation. These findings suggest that Shp2 acts as a positive regulator in RTK signaling by dephosphorylating and inactivating Spry. 相似文献
18.
Notch signaling regulates the pattern of auditory hair cell differentiation in mammals 总被引:11,自引:0,他引:11
The development of the mammalian cochlea is an example of patterning in the peripheral nervous system. Sensory hair cells and supporting cells in the cochlea differentiate via regional and cell fate specification. The Notch signaling components shows both distinct and overlapping expression patterns of Notch1 receptor and its ligands Jagged1 (Jag1) and Jagged2 (Jag2) in the developing auditory epithelium of the rat. On embryonic day 16 (E16), many precursor cells within the K?lliker's organ immunostained for the presence of both Notch1 and Jag1, while the area of hair cell precursors did not express either Notch1 and Jag1. During initial events of hair cell differentiation between E18 and birth, Notch1 and Jag1 expression predominated in supporting cells and Jag2 in nascent hair cells. Early after birth, Jag2 expression decreased in hair cells while the pattern of Notch1 expression now included both supporting cells and hair cells. We show that the normal pattern of hair cell differentiation is disrupted by alteration of Notch signaling. A decrease of either Notch1 or Jag1 expression by antisense oligonucleotides in cultures of the developing sensory epithelium resulted in an increase in the number of hair cells. Our data suggest that the Notch1 signaling pathway is involved in a complex interplay between the consequences of different ligand-Notch1 combinations during cochlear morphogenesis and the phases of hair cell differentiation. 相似文献
19.
Tumor necrosis factor receptor-associated factor 6 (TRAF6) functions as an adaptor, positively regulating the NF-kappaB pathway. Here we report a new function of human TRAF6, the direct stimulation of apoptosis. The mechanism of apoptosis induction results from the capacity of human TRAF6 to interact and activate caspase 8. Both the C-terminal TRAF domain of human TRAF6, which directly interacts with the death effector domain of pro-caspase 8, and the N-terminal RING domain, which is required for activation of caspase 8, are necessary for the induction of apoptosis. The role of endogenous TRAF6 in regulating apoptosis was confirmed by extinguishing TRAF6 expression with specific small-hairpin RNA that resulted in diminished spontaneous apoptosis and resistance to induced apoptosis. In contrast to the human molecule, murine TRAF6 displayed less ability to induce apoptosis and a greater capacity to stimulate NF-kappaB activity. Human and murine TRAF6 are similar except in the region between zinc finger 5 and the TRAF domains. Reciprocal transfer of this connecting region completely exchanged the ability of human and murine TRAF6 to induce apoptosis and activate NF-kappaB. Unique regions of TRAF6 therefore play an important role in determining cell fate. 相似文献
20.
El-Hashash AH Turcatel G Al Alam D Buckley S Tokumitsu H Bellusci S Warburton D 《Development (Cambridge, England)》2011,138(7):1395-1407
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium. 相似文献