首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slowly activating vacuolar channels (SV), were examined in embryogenic and non-embryogenic cultures of winter wheat using a patch-clamp technique. Four different types of cultures were examined: embryogenic and non-embryogenic calli from embryos, embryogenic and non-embryogenic calli from inflorescences. In a cell-attached mode single SV channel events were recorded. Unitary conductance of single SV channels was between 37 pS and 48 pS and did not significantly depend on the kind of the culture, although it was a tendency that SV channels of embryogenic calli possessed lower unitary conductance than those of non-embryogenic. 2,4-D caused significant lowering of unitary conductance from 48±6 pS in the control culture of embryogenic embryos to 28±6 pS in vacuoles treated. The SV channel density was estimated as 0.34 μm−2.  相似文献   

2.
G-protein-coupled inward rectification K(+) (GIRK) channels play an important role in modulation of synaptic transmission and cellular excitability. The GIRK channels are regulated by diverse intra- and extracellular signaling molecules. Previously, we have shown that GIRK1/GIRK4 channels are activated by extracellular protons. The channel activation depends on a histidine residue in the M1-H5 linker and may play a role in neurotransmission. Here, we show evidence that the heteromeric GIRK1/GIRK4 channels are inhibited by intracellular acidification. This inhibition was produced by selective decrease in the channel open probability with a modest drop in the single-channel conductance. The inhibition does not seem to require G-proteins as it was seen in two G-protein coupling-defective GIRK mutants and in excised patches in the absence of exogenous G-proteins. Three histidine residues in intracellular domains were critical for the inhibition. Individual mutation of His-64, His-228, or His-352 in GIRK4 abolished or greatly diminished the inhibition in homomeric GIRK4. Mutations of any of these histidine residues in GIRK4 or their counterparts in GIRK1 were sufficient to eliminate the pH(i) sensitivity of the heteromeric GIRK1/GIRK4 channels. Thus, the molecular and biophysical bases for the inhibition of GIRK channels by intracellular protons are illustrated. Because of the inequality of the pH(i) and pH(o) in most cells and their relatively independent controls by cellular versus systemic mechanisms, such pH(i) sensitivity may allow these channels to regulate cellular excitability in certain physiological and pathophysiological conditions when intracellular acidosis occurs.  相似文献   

3.
Summary The patch-clamp technique in whole-cell configuration was used to study the electrical properties of the tonoplast in isolated vacuoles fromAcer pseudoplatanus cultured cells. In symmetrical KCl or K2 malate solutions, voltage- and time-dependent inward currents were elicited by hyperpolarizing the tonoplast (inside negative), while in the positive range of potential the conductance was very small. The specific conductance of the tonoplast at –100 mV, in 100mm symmetrical KCl was about 160 S/cm2. The reversal potentials (E rev) of the current, measured in symmetrical or asymmetrical ion concentrations (cation, anion or both) were very close to the values of the K+ equilibrium potential. Experiments performed in symmetrical or asymmetrical NaCl indicate that Na+ too can flow through the channels. NeitherE rev nor amplitude and kinetics of the current changed by replacing NaCl with KCl in the external solution. These results indicate the presence of hyperpolarization-activated channels in tonoplasts, which are permeable to K+ as well as to Na+. Anions such as Cl or malate seem to contribute little to the channel current.  相似文献   

4.
Gating of the cystic fibrosis transmembrane conductance regulator (CFTR) involves a coordinated action of ATP on two nucleotide binding domains (NBD1 and NBD2). Previous studies using nonhydrolyzable ATP analogues and NBD mutant CFTR have suggested that nucleotide hydrolysis at NBD1 is required for opening of the channel, while hydrolysis of nucleotides at NBD2 controls channel closing. We studied ATP-dependent gating of CFTR in excised inside-out patches from stably transfected NIH3T3 cells. Single channel kinetics of CFTR gating at different [ATP] were analyzed. The closed time constant (tauc) decreased with increasing [ATP] to a minimum value of approximately 0.43 s at [ATP] >1.00 mM. The open time constant (tauo) increased with increasing [ATP] with a minimal tauo of approximately 260 ms. Kinetic analysis of K1250A-CFTR, a mutant that abolishes ATP hydrolysis at NBD2, reveals the presence of two open states. A short open state with a time constant of approximately 250 ms is dominant at low ATP concentrations (10 microM) and a much longer open state with a time constant of approximately 3 min is present at millimolar ATP. These data suggest that nucleotide binding and hydrolysis at NBD1 is coupled to channel opening and that the channel can close without nucleotide interaction with NBD2. A quantitative cyclic gating scheme with microscopic irreversibility was constructed based on the kinetic parameters derived from single-channel analysis. The estimated values of the kinetic parameters suggest that NBD1 and NBD2 are neither functionally nor biochemically equivalent.  相似文献   

5.
Using the patch‐clamp technique, we investigated the transport properties of vacuolar ion channels from the roots of water hyacinth, Eichhornia crassipes (Mart. Solms, Pontederiacae). Eichhornia crassipes vacuoles displayed large voltage‐dependent rectifying slow‐vacuolar (SV) currents, which activated in a few seconds at positive potentials and deactivated at negative voltages in a few hundreds of millseconds. Similarly to SV channel previously identified in the tonoplast of terrestrial plants, SV currents in E. crassipes were activated by micromolar concentrations of Ca2+ and current slightly increased (25%) on addition (10 mm ) of the reducing agent dithiothreitol (DTT). Eichhornia crassipes SV channels were equally permeable to K+ and Na+. The permeability sequence derived from current values is: K+ ≈ Na+ > Rb+ > NH4+ ≈ Cs+ >> TEA+. Excised membrane patches displayed single channel transitions typical of SV‐type single channel openings with a conductance of (83·0 ± 5·6) pS; a smaller channel with a conductance of (31·0 ± 2·7) pS was also identified. Metals such as Ni2+ and Zn2+ decreased the vacuolar current in a reversible manner. However, although Zn2+ inhibition is comparable to that induced by the same metal in vacuoles from the main root of sugar beet (Beta vulgaris L.), the inhibition of the SV currents by Ni2+ is not as substantial in E. crassipes as in sugar beet. To our knowledge, this is the first electrophysiological characterization of ionic transport in E. crassipes, a pervasive troublesome aquatic weed, which has exceptional absorption properties of several water contaminants such as heavy metals, pesticides and phenols.  相似文献   

6.
A series of benzoxazinones was used to investigate the interaction of human cathepsin G with acyl-enzyme inhibitors. With respect to the primary specificity of cathepsin G, inhibitors with hydrophobic or basic residues at position 2 were included in the study. Parameters of the enzyme acylation and deacylation were determined by slow-binding kinetics in the presence of a chromogenic substrate. For selected inhibitors, the time course of the enzyme-catalyzed conversion of the inhibitors was followed. This approach was suitable to elucidate a rate-determining deacylation step. Docking simulations of the noncovalent enzyme-inhibitor complexes were performed and several clusters were analyzed for each inhibitor. The amino acids of the active site that participate in the binding of the inhibitors were determined. The arrangements in several clusters of an inhibitor were not uniform with respect to the orientation by which the inhibitor was bound in the S(1) pocket. Docking of the basic piperazino derivatives 6 and 10 indicated an interaction with Glu 226 at the bottom of the S(1) specificity pocket. The (N-methyl)benzylamino derivative 1 showed the strongest acylation rate (k(on)=1200 M(-1) s(-1)), which was attributed to a high extent of pseudo-productive orientations of the noncovalent preassociation complex.  相似文献   

7.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) is a ligand-gated intracellular Ca(2+) release channel that plays a central role in modulating cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). The fungal metabolite adenophostin A (AdA) is a potent agonist of the InsP(3)R that is structurally different from InsP(3) and elicits distinct calcium signals in cells. We have investigated the effects of AdA and its analogues on single-channel activities of the InsP(3)R in the outer membrane of isolated Xenopus laevis oocyte nuclei. InsP(3)R activated by either AdA or InsP(3) have identical channel conductance properties. Furthermore, AdA, like InsP(3), activates the channel by tuning Ca(2+) inhibition of gating. However, gating of the AdA-liganded InsP(3)R has a critical dependence on cytoplasmic ATP free acid concentration not observed for InsP(3)-liganded channels. Channel gating activated by AdA is indistinguishable from that elicited by InsP(3) in the presence of 0.5 mM ATP, although the functional affinity of the channel is 60-fold higher for AdA. However, in the absence of ATP, gating kinetics of AdA-liganded InsP(3)R were very different. Channel open time was reduced by 50%, resulting in substantially lower maximum open probability than channels activated by AdA in the presence of ATP, or by InsP(3) in the presence or absence of ATP. Also, the higher functional affinity of InsP(3)R for AdA than for InsP(3) is nearly abolished in the absence of ATP. Low affinity AdA analogues furanophostin and ribophostin activated InsP(3)R channels with gating properties similar to those of AdA. These results provide novel insights for interpretations of observed effects of AdA on calcium signaling, including the mechanisms that determine the durations of elementary Ca(2+) release events in cells. Comparisons of single-channel gating kinetics of the InsP(3)R activated by InsP(3), AdA, and its analogues also identify molecular elements in InsP(3)R ligands that contribute to binding and activation of channel gating.  相似文献   

8.
The temperature dependence of the activity of ion channels was investigated, by means of the patch-clamp technique in the 'whole-cell' configuration, using protoplasts and vacuoles isolated form Arabidopsis thaliana L. cultured cells. The effect of temperature changes in the range 11–22°C was tested on the hyperpolarization and depolarization-activated K+ currents in the plasma membrane and on the hyperpolarization-activated K currents in the tonoplast (vacuolar membrane). All 3 kinds of currents were unaffected by increasing temperature up to 15°C and were activated between 15 and 20°C.  相似文献   

9.
We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2-M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the alpha subunit (alphaS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the alphaS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an approximately 92-fold increased gating equilibrium constant, which is consistent with an approximately 10-fold decreased EC(50) in the presence of ACh. With choline, this mutation accelerates channel opening approximately 28-fold, slows channel closing approximately 3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, alphaS269I acetylcholine receptors open at a rate of approximately 1.4 x 10(6) s(-1) and close at a rate of approximately 760 s(-1). These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of approximately 140 s(-1). Ile mutations at positions flanking alphaS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the alpha subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the alphaS269I mutation, Ile mutations at equivalent positions of the beta, straightepsilon, and delta subunits do not affect apparent open-channel lifetimes. However, in beta and straightepsilon, shifting the mutation one residue to the NH(2)-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2-M3L of the alpha subunit moves before the corresponding linkers of the beta and straightepsilon subunits.  相似文献   

10.
The plant vacuolar sorting receptor (VSR) binds proteins carrying vacuolar sorting signals (VSS) of the 'sequence-specific' type (ssVSS) but not the C-terminal, hydrophobic sorting signals (ctVSS). Seeds of Arabidopsis mutants lacking the major VSR isoform, AtVSR1, secrete a proportion of the proteins destined to storage vacuoles. The sorting signals for these proteins are not well defined, but they do not seem to be of the ssVSS type. Here, we tested whether absence of VSR1 in seeds leads to secretion of reporter proteins carrying ssVSS but not ctVSS. Our results show that reporters carrying either ssVSS or ctVSS are equally secreted in the absence of VSR1. We discuss our findings in relation to the current model for vacuolar sorting.  相似文献   

11.
All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.  相似文献   

12.
Isogenic dormant and non-dormant barley grains provide a useful system to study the molecular mechanisms of grain dormancy and the role of plant hormones in this process. As ion fluxes are associated with dormancy-related plant hormone responses, we compared the properties of the inward rectifying potassium conductance in aleurone protoplasts isolated from dormant and non-dormant Triumph grains and in germinating Himalaya grains. Maximal conductance, voltage dependency of steady-state activation, activation and deactivation kinetics were studied in the whole-cell patch-clamp configuration. Activation and deactivation time courses were single exponential. No differences in the above described properties were found between the protoplasts isolated from non-dormant Triumph and Himalaya grains. However, the maximal conductance (corrected for cell size) in protoplasts from dormant Triumph grains was much smaller (65%), and activation time constants were much larger as compared to protoplasts from non-dormant grains. No differences were found in the deactivation kinetics in the three different types of protoplasts. The half-maximal activation potential was slightly more negative in protoplasts from dormant grains than from non-dormant grains.  相似文献   

13.
Gold(I) compounds have been used in the treatment of rheumatoid arthritis for over 80 years, but the biological targets and the structure–activity relationships of these drugs are not well understood. Of particular interest is the molecular mechanism behind the antiarthritic activity of the orally available drug triethylphosphine(2,3,4,6-tetra-O-acetyl-β-1-d-thiopyranosato-S) gold(I) (auranofin, Ridaura). The cathepsin family of lysosomal, cysteine-dependent enzymes is an attractive biological target of Au(I) and is inhibited by auranofin and auranofin analogs with reasonable potency. Here we employ a combination of experimental and computational investigations into the effect of changes in the phosphine ligand of auranofin on its in vitro inhibition of cathepsin B. Sequential replacement of the ethyl substituents of triethylphosphine by phenyl groups leads to increasing potency in the resultant Au(I) complexes, due in large part to favorable interactions of the more sterically bulky Au(I)–PR3 fragments with the enzyme active site.  相似文献   

14.
Monochlorobimane (BmCl), a non-fluorescent cell-per-meant compound that reacts with glutathione to yield a strong blue fluorescent conjugate bimane-glutathione (Bm-SG), was used to trace the glutathione-dependent detoxification of xenobiotics in plant cells and protoplasts. In BmCl-labelled cells and protoplasts, fluorescence developed rapidly and was quickly concentrated in the vacuole. The rate of fluorescence development was dependent on the concentration of BmCl and the only metabolite formed was the conjugate Bm-SG. The formation of Bm-SG was correlated with a decrease in the amount of intracellular GSH. Compounds which reduced the intracellular levels of GSH severely reduced the formation of Bm-SG. Bm-SG was shown to be transported into isolated vacuoles by an ATP-dependent vana-date-sensitive mechanism. Kinetic analysis of cellular Bm-SG formation implicated both spontaneous conjugation and enzyme catalysis. Our results demonstrate a cellular pathway for xenobiotic detoxification in plants, starting with conjugation to glutathione in the cytoplasm, followed by the transport of the conjugates into the vacuole. This pathway is used to counter the toxic effects of some herbicides and environmental pollutants and overlaps with or parallels the pathway used for the biosynthesis of anthocyanins.  相似文献   

15.
Previous results on Limulus ventral photoreceptors have suggested that besides inositol trisphosphate, another unknown transmitter may also work in the transduction cascade. This assumption has been supported by the finding of two light-activated channel types. The present report furnishes further evidence of the dual transmitter mechanism in phototransduction by analyzing the kinetic properties and voltage dependency of these cation channels with conductances of 12 pS and 30 pS. Single-channel currents were recorded in Limulus ventral nerve photoreceptors in cell-attached configuration at 14°C. At V m + 80 mV the open-time histograms of both channels were fit best by the sum of two exponentials; time constants (and weights) were: 0.81 ms (0.62) and 6.20 ms (0.38) for the 12 pS channels and 2.38 ms (0.43) and 19.4 ms (0.57) for the 30 pS channels. At this potential the mean open times were 2.7 ms for the 12 pS and 13.3 ms for the 30 pS channels, about two-times larger than at hyperpolarizing potentials. The deactivation kinetics were also different for the two channels. The time constants of the decay of the channel activity, after switching off the light, were 2.5 s for the 12 pS and 12.9 s for the 30 pS channels. The 12 pS channel exhibits bursting and subconductance states at positive potentials. The subconductances are about 20%, 46% and 72% of the fully open state. Results show that the two types of light-activated channels have different kinetic parameters, voltage dependence and gating mechanisms. The two channels are suggested to be gated by different transmitters or processes. It is proposed that for the 30 pS channel the transmitter could be calcium ion or a calcium-dependent transmitter.  相似文献   

16.
Hydrolysis of D-valyl-L-leucyl-L-arginine p-nitroanilide by human tissue kallikrein (hK1) was studied in the absence and in the presence of increasing concentrations of the following chloride salts: sodium, potassium, calcium, magnesium and aluminium. The data indicate that the inhibition of hK1 by sodium, potassium, calcium and magnesium is linear competitive and that divalent cations are more potent inhibitors of hK1 than univalent cations. However the inhibition of hK1 by aluminium cation is linear mixed, with the cation being able to bind to both the free enzyme and the ES complex. This cation was the best hK1 inhibitor. Aluminium is not a physiological cation, but is a known neurotoxicant for animals and humans. The neurotoxic actions of aluminium may relate to neuro-degenerative diseases.  相似文献   

17.
Ca(2+), Mg(2+), and K(+) activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca(2+), by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca(2+) activity was approximately 0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca(2+) in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca(2+)) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca(2+) within a physiological range of concentrations (0.1-1.0 mM). Aggregation of the physiological vacuolar Na(+) (60 mM) and Mg(2+) (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca(2+) variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca(2+) activates the SV channel in a voltage-independent manner with K(d)=0.7-1.5 microM. Comparison of the vacuolar Ca(2+) fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 microM) cytosolic Ca(2+), only 0.5% of SV channels are open. This mediates a Ca(2+) release of only a few pA per vacuole (approximately 0.1 pA per single SV channel). Overall, our data suggest that the release of Ca(2+) through SV channels makes little contribution to a global cytosolic Ca(2+) signal.  相似文献   

18.
The first committed step in long-chain fatty acid synthesis is catalyzed by the multienzyme complex acetyl CoA carboxylase. One component of the acetyl CoA carboxylase complex is biotin carboxylase which catalyzes the ATP-dependent carboxylation of biotin. The Escherichia coli form of biotin carboxylase can be isolated from the other components of the acetyl CoA carboxylase complex such that enzymatic activity is retained. The synthesis of a reaction intermediate analog inhibitor of biotin carboxylase has been described recently (Organic Lett. 1, 99-102, 1999). The inhibitor is formed by coupling phosphonoacetic acid to the 1'-N of biotin. In this paper the characterization of the inhibition of biotin carboxylase by this reaction-intermediate analog is described. The analog showed competitive inhibition versus ATP with a slope inhibition constant of 8 mM. Noncompetitive inhibition was found for the analog versus biotin. Phosphonoacetate exhibited competitive inhibition with respect to ATP and noncompetitive inhibition versus bicarbonate. Biotin was found to be a noncompetitive substrate inhibitor of biotin carboxylase. These data suggested that biotin carboxylase had an ordered addition of substrates with ATP binding first followed by bicarbonate and then biotin.  相似文献   

19.
The H+-translocating inorganic pyrophosphatase (H+-PPase) associated with vesicles of the vacuolar membrane (tonoplast) isolated from beet (Beta vulgaris L.) is subject to direct inhibition by Ca2+ and a number of other divalent cations (Co2+, Mn2+, Zn2+). By contrast, the H+-translocating ATPase (H+-ATPase) located on the same membrane is insensitive to Ca2+. Here we examine the mechanism and feasibility of regulation of the vacuolar H+-PPase by cytosolic free Ca2+ under the conditions thought to prevail in vivo with respect to Mg2+, inorganic pyrophosphate (PPi), and pH. The minimal reaction scheme that satisfactorily describes the effects of elevated Ca2+ or CaPPi on the enzyme is one that invokes equilibrium binding of substrate (Mg2PPi) at one site, inhibitory binding of Mg2PPi to a lower-affinity second site, binding of activator (Mg2+) at a third site, and direct binding of Ca2+ or CaPPi to a fourth site. Changes in enzyme activity in response to selective manipulation of either Ca2+ or CaPPi are explicable only if Ca2+, rather than CaPPi, is the inhibitory ligand. This conclusion is supported by the finding that CaPPi fails to mimic substrate in protection of the enzyme from inhibition by N-ethylmaleimide. Furthermore, the reaction scheme quantitatively and independently predicts the observed noncompetitive effects of free Ca2+ on the substrate concentration dependence of H+-PPase activity. The results are discussed in relation to the previous proposal that CaPPi is the principal inhibitory ligand of the vacuolar H+-PPase (M. Maeshima [1991] Eur J Biochem 196: 11-17) and the possibility that in vivo modulation of cytosolic free Ca2+ might constitute a specific mechanism for selective regulation of this enzyme, and consequently for stabilization of PPi levels in the cytoplasm of plant cells.  相似文献   

20.
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号