首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleophosmin (NPM/B23) is a nucleolar phosphoprotein involved in cellular response to many different stimuli. Herein, we studied the molecular mechanism of NPM/B23 induction by curcumin, a natural AP-1 inhibitor with antitumor properties. Exposure to 5-30 μM curcumin significantly and dose-dependently increased the level of NPM/B23 in non-transformed NIH 3T3 cells but not HeLa cells and F9 cells. Besides, the transformed F9 and HeLa cells are more sensitive to curcumin-induced cell death and growth inhibition than NIH 3T3 cells. Overexpression of c-Jun, but not c-Fos, decreased ∼40% of NPM/B23 and enhanced the sensitivity of NIH 3T3 cells to 30 μM curcumin. Furthermore, down-regulation of NPM/B23 by transfection with NPM/B23 antisense plasmid enhanced the sensitivity to curcumin-induced cell death and growth inhibition. These results indicated that NPM/B23 expression regulates cellular sensitivity to curcumin. Besides, NPM/B23 knockdown may facilitate as a novel strategy to promote the sensitivity of cancer cells to curcumin.  相似文献   

2.
The TNF-related apoptosis inducing ligand (TRAIL) has promising anti-cancer therapeutic activity, although significant percentage of primary tumors resistant to TRAIL-induced apoptosis remains an obstacle to the extensive use of TRAIL-based mono-therapies. Natural compound curcumin could potentially sensitize resistant cancer cells to TRAIL. We found that the combination of TRAIL with curcumin can synergistically induces apoptosis in three TRAIL-resistant breast cancer cell lines. The mechanism behind this synergistic cell death was investigated by examining an effect of curcumin on the expression and activation of TRAIL-associated cell death proteins. Immunoblotting, RNA interference, and use of chemical inhibitors of TRAIL-activate signaling revealed differential effects of curcumin on the expression of Mcl-1 and activities of ERK and Akt. Curcumin-induced production of reactive oxygen species did not affect total expression of DR5 but it enhanced mobilization of DR5 to the plasma membrane. In these breast cancer cells curcumin also induced downregulation of IAP proteins. Taken together, our data suggest that a combination of TRAIL and curcumin is a potentially promising treatment for breast cancer, although the specific mechanisms involved in this sensitization could differ even among breast cancer cells of different origins.  相似文献   

3.

Objective

Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells.

Methods

Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins.

Results

The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation.

Conclusions

Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products.  相似文献   

4.
5.
Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from Curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:MβCD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:MβCD treatment. Moreover, curcumin abrogated the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:MβCD, which led to a suppression of AP-1 promoter activity stimulated by Chol:MβCD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:MβCD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:MβCD. Taking together, our data suggest curcumin inhibits Chol:MβCD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease.  相似文献   

6.
The molecular chaperone heat shock protein 90 (Hsp90) affects the function of many oncogenic signaling proteins including nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressed in anaplastic large cell lymphoma (ALCL). While ALK-positive ALCL cells are sensitive to the Hsp90 inhibitor and the geldanamycin (GA) analog, 17-allylamino-17-demethoxygeldanamycin (17-AAG), the proteomic effects of these drugs on ALK-positive ALCL cells are unpublished. In this study, we investigated the cellular, biologic, and proteomic changes occurring in ALK-positive ALCL cells in response to GA treatment. GA induced G2/M cell cycle arrest and caspase-3-mediated apoptosis. Furthermore, quantitative proteomic changes analyzed by cleavable isotope-coded affinity tag-LC-MS/MS (cICAT-LC-MS/MS) identified 176 differentially expressed proteins. Out of these, 49 were upregulated 1.5-fold or greater and 70 were downregulated 1.5-fold or greater in GA-treated cells. Analysis of biological functions of differentially expressed proteins revealed diverse changes, including induction of proteins involved in the 26S proteasome as well as downregulation of proteins involved in signal transduction and protein and nucleic acid metabolism. Pathway analysis revealed changes in MAPK, WNT, NF-kappaB, TGFbeta, PPAR, and integrin signaling components. Our studies reveal some of the molecular and proteomic consequences of Hsp90 inhibition in ALK-positive ALCL cells and provide novel insights into the mechanisms of its diverse cellular effects.  相似文献   

7.
8.

Background

Tuberculosis (TB) is the most threatening infectious disease globally. Although progress has been made to reduce global incidence of TB, emergence of multidrug resistant (MDR) TB threatens to undermine these advances. To combat the disease, novel intervention strategies effective against drug resistant and sensitive subpopulations of M. tuberculosis are urgently required as adducts in the present treatment regimen. Using THP-1 cells we have analyzed and compared the global protein expression profile of broth-cultured and intraphagosomally grown drug resistant and sensitive M.tuberculosis clinical isolates.

Results

On comparing the two dimensional (2-DE) gels, many proteins were found to be upregulated/expressed during intracellular state which were identified by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Four proteins (adenosylhomocysteinase, aspartate carbomyltransferase, putatitive thiosulfate sulfurtransferase and universal stress protein) were present in both intracellular MDR and sensitive isolates and three of these belonged to intermediary metabolism and respiration category. Two proteins (alanine dehydrogenase and adenosine kinase) of intracellular MDR isolate and two (glucose-6-phosphate isomerase and ATP synthase epsilon chain) of intracellular sensitive isolate belonged to intermediary metabolism and respiration category. One protein (Peroxidase/Catalase) of intracellular MDR and three (HSPX, 14 kDa antigen and 10 kDa chaperonin) of sensitive isolate belonged to virulence, detoxification and adaptation category. ESAT-6 of intracellular MDR belonged to cell wall and cell processes category. Two proteins (Antigen 85-C and Antigen 85-A) of intracellular sensitive isolate were involved in lipid metabolism while probable peptidyl-prolyl cis-trans isomerase A was involved in information pathways. Four (Rv0635, Rv1827, Rv0036c and Rv2032) of intracellular MDR and two proteins (Rv2896c and Rv2558c) of sensitive isolate were hypothetical proteins which were functionally characterized using bioinformatic tools. Bioinformatic findings revealed that the proteins encoded by Rv0036, Rv2032c, Rv0635, Rv1827 and Rv2896c genes are involved in cellular metabolism and help in intracellular survival.

Conclusions

Mass spectrometry and bioinformatic analysis of both MDR and sensitive isolates of M. tuberculosis during intraphagosomal growth showed that majority of commonly upregulated/expressed proteins belonged to the cellular metabolism and respiration category. Inhibitors of the metabolic enzymes/intermediate can therefore serve as suitable drug targets against drug-resistant and sensitive subpopulations of M. tuberculosis.  相似文献   

9.
Oxidative stress (OS), as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS) and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA), as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM). In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2’, 7’-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH) did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce oxidative stress. The findings from this study clearly demonstrate that curcumin is effective to reduce the dysregulation of cellular redox balance on porcine granulosa cells in vitro and should be further investigated for its protective role against ZEA in animals.  相似文献   

10.
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.  相似文献   

11.
Curcumin exhibits antioxidant properties in normal cells where the uptake is low, unlike in tumor cells where uptake is high and curcumin increases reactive oxygen species (ROS) production and cell death. Mitochondria are the main source and primary target of cellular ROS. We hypothesized that curcumin would regulate cellular redox status and mitochondrial function, depending on cell sensitivity and/or curcumin concentration in normal cells. We examined the differences between low and high concentrations of curcumin, with specific attention focused on ROS levels, mitochondrial function, and cell viability in mouse C2C12 myoblast under normal and simulated conditions of diabetes. Cells incubated with high concentrations of curcumin (10–50 μM) resulted in decreased cell viability and sustained robust increases in ROS levels. Mechanistic studies showed that increased ROS levels in cells incubated with 20 μM curcumin induced opening of mitochondrial permeability transition pores and subsequent release of cytochrome c, activation of caspases 9 and 3/7, and apoptotic cell death. Low concentrations of curcumin (1–5 μM) did not affect cell viability, but induced a mild increase in ROS levels, which peaked at 2 hr after the treatment. Incubation with 5 μM curcumin also induced ROS-dependent increases in mitochondrial mass and membrane potential. Finally, pretreatment with 5 μM curcumin prevented high glucose-induced oxidative cell injury. Our study suggests that mitochondria respond differentially depending on curcumin concentration-dependent induction of ROS. The end result is either cell protection or death. Curcumin may be an effective therapeutic target for diabetes and other mitochondrial diseases when used in low concentrations.  相似文献   

12.
Holy JM 《Mutation research》2002,518(1):71-84
The dietary phytochemical curcumin possesses anti-inflammatory, -oxidant, and cytostatic properties, and exhibits significant potential as a chemopreventative agent in humans. Although many cell types are arrested in the G2/M-phase of the cell cycle after curcumin treatment, the mechanisms by which this occurs are not well understood. The purpose of this study was to examine the effects of curcumin on the cell cycle of MCF-7 breast cancer cells to determine whether growth arrest is associated with structural changes in cellular organization during mitosis. For this purpose, MCF-7 breast cancer cells were treated with 10-20 microM curcumin, and the effects on cell proliferation and mitosis studied. Structural changes were monitored by immunolabeling cells with antibodies to a number of cytoplasmic and nuclear proteins, including beta-tubulin, NuMA, lamins A/C and B1, lamin B receptor, and centromere antigens. At the concentrations used, a single dose of curcumin does not induce significant apoptosis, but is highly effective in inhibiting cell proliferation for over 6 days. During the first 24-48 h of treatment, many cells are arrested in M-phase, and DNA synthesis is almost completely inhibited. Remarkably, arrested mitotic cells exhibit monopolar spindles, and chromosomes do not undergo normal anaphase movements. After 48 h, most cells eventually leave M-phase, and many form multiple micronuclei instead of individual daughter nuclei. These observations indicate that the curcumin-induced G2/M arrest previously described for MCF-7 cells is due to the assembly of aberrant, monopolar mitotic spindles that are impaired in their ability to segregate chromosomes. The production of cells with extensive micronucleation after curcumin treatment suggests that at least some of the cytostatic effects of this phytochemical are due to its ability to disrupt normal mitosis, and raises the possibility that curcumin may promote genetic instability under some circumstances.  相似文献   

13.
Due to high prevalence and slow progression of prostate cancer, primary prevention appears to be attractive strategy for its eradication. During the last decade, curcumin (diferuloylmethane), a natural compound from the root of turmeric (Curcuma longa), was described as a potent chemopreventive agent. Curcumin exhibits anti-inflammatory, anticarcinogenic, antiproliferative, antiangiogenic, and antioxidant properties in various cancer cell models. This study was designed to identify proteins involved in the anticancer activity of curcumin in androgen-dependent (22Rv1) and -independent (PC-3) human prostate cancer cell lines using two-dimensional difference in gel electrophoresis (2D-DIGE). Out of 425 differentially expressed spots, we describe here the MALDI-TOF-MS analysis of 192 spots of interest, selected by their expression profile. This approach allowed the identification of 60 differentially expressed proteins (32 in 22Rv1 cells and 47 in PC-3 cells). Nineteen proteins are regulated in both cell lines. Further bioinformatic analysis shows that proteins modulated by curcumin are implicated in protein folding (such as heat-shock protein PPP2R1A; RNA splicing proteins RBM17, DDX39; cell death proteins HMGB1 and NPM1; proteins involved in androgen receptor signaling, NPM1 and FKBP4/FKBP52), and that this compound could have an impact on miR-141, miR-152, and miR-183 expression. Taken together, these data support the hypothesis that curcumin is an interesting chemopreventive agent as it modulates the expression of proteins that potentially contribute to prostate carcinogenesis.  相似文献   

14.
15.
16.
Curcumin is a phenolic natural product isolated from the rhizome of Curcuma longa (tumeric). It was previously described that curcumin had a potent anti-inflammatory effect and inhibited the proliferation of a variety of tumor cells. In the present study, we investigated the inhibitory effects of curcumin on the response of normal murine splenic B cells. Curcumin inhibited the proliferative response of purified splenic B cells from BALB/c mice stimulated with the Toll-like receptor ligands LPS and CpG oligodeoxynucleotides. LPS-induced IgM secretion was also inhibited by curcumin. The proliferative response induced by either the T-independent type 2 stimuli anti-delta-dextran or anti-IgM antibodies was relatively resistant to the effect of curcumin. We investigated the intracellular signaling events involved in the inhibitory effects of curcumin on murine B cells. Curcumin did not inhibit the increase in calcium levels induced by anti-IgM antibody. Western blotting analysis showed that curcumin inhibited TLR ligands and anti-IgM-induced phosphorylation of ERK, IκB and p38. Curcumin also decreased the nuclear levels of NFκB. Our results suggested that curcumin is an important inhibitor of signaling pathways activated upon B cell stimulation by TLR ligands. These data indicate that curcumin could be a potent pharmacological inhibitor of B cell activation.  相似文献   

17.
In the present work, we studied the effects of fenretinide (N-(4-hydroxyphenyl)retinamide (HPR)), a hydroxyphenyl derivative of all-trans-retinoic acid, on sphingolipid metabolism and expression in human ovarian carcinoma A2780 cells. A2780 cells, which are sensitive to a pharmacologically achievable HPR concentration, become 10-fold more resistant after exposure to increasing HPR concentrations. Our results showed that HPR was able to induce a dose- and time-dependent increase in cellular ceramide levels in sensitive but not in resistant cells. This form of resistance in A2780 cells was not accompanied by the overexpression of multidrug resistance-specific proteins MDR1 P-glycoprotein and multidrug resistance-associated protein, whose mRNA levels did not differ in sensitive and resistant A2780 cells. HPR-resistant cells were characterized by an overall altered sphingolipid metabolism. The overall content in glycosphingolipids was similar in both cell types, but the expression of specific glycosphingolipids was different. Specifically, our findings indicated that glucosylceramide levels were similar in sensitive and resistant cells, but resistant cells were characterized by a 6-fold lower expression of lactosylceramide levels and by a 6-fold higher expression of ganglioside levels than sensitive cells. The main gangliosides from resistant A2780 cells were identified as GM3 and GM2. The possible metabolic mechanisms leading to this difference were investigated. Interestingly, the mRNA levels of glucosylceramide and lactosylceramide synthases were similar in sensitive and resistant cells, whereas GM3 synthase mRNA level and GM3 synthase activity were remarkably higher in resistant cells.  相似文献   

18.
Ye MX  Zhao YL  Li Y  Miao Q  Li ZK  Ren XL  Song LQ  Yin H  Zhang J 《Phytomedicine》2012,19(8-9):779-787
Curcumin, a yellow pigment derived from Curcuma longa Linn, has been favored by the Eastern as dietary ingredients for centuries. During the past decade, extensive investigations have revealed curcumin sensitized various chemotherapeutic agents in human breast, colon, pancreas, gastric, liver, brain and hematological malignant disorders in vivo and in vitro. Several pathways and specific targets including NF-κB, STAT3, COX-2, Akt and multidrug resistant protein have been identified to facilitate curcumin as a chemosensitizer. Recent studies suggest HIF-1α participated in the development of drug resistance in cancer cells and targeting HIF-1α either by RNAi or siRNA successfully overcame chemotherapeutic resistance. To investigate the mechanism basis of curcumin as a chemosensitizer in lung cancer, we examined curcumin's effects on HIF-1α in cis-platin (DDP) sensitive A549 and resistant A549/DDP cell lines by RT-PCR and Western blot. HIF-1α in A549/DDP cells was found to be overexpressed at both mRNA and protein levels together with a poor response to DDP. Results from transient transfection and flow cytometry showed the HIF-1α abnormality contributed to DDP resistance in A549/DDP lung cancer cells. Combined curcumin and DDP treatment markedly inhibited A549/DDP cells proliferation, reversed DDP resistance and triggered apoptotic death by promoting HIF-1α degradation and activating caspase-3, respectively. Expression of HIF-1α-dependent P-gp also seemed to decrease as response to curcumin in a dose-dependent manner. Our findings shed light on drug resistant reversing effect of curcumin in lung cancer cells by inhibiting HIF-1α expression and activating caspase-3.  相似文献   

19.
The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-alpha treatment. The IFN-alpha-treated A549 cells showed increase in protein expression levels of NF-kappaB and COX-2. IFN-alpha induced NF-kappaB binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-alpha-induced COX-2 expression in A549 cells. Within 10 min, IFN-alpha rapidly induced the binding activity of a gamma-(32)P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-alpha-induced activations of NF-kappaB and COX-2 were inhibited by the addition of curcumin in A549 cells.  相似文献   

20.
A hallmark of cancer is resistance to apoptosis, with both the loss of proapoptotic signals and the gain of anti-apoptotic mechanisms contributing to tumorigenesis. As inducing apoptosis in malignant cells is one of the most challenging tasks regarding cancer, researchers increasingly focus on natural products to regulate apoptotic signaling pathways. Curcumin, a polyphenolic derivative of turmeric, is a natural compound derived from Curcuma longa, has attracted great interest in the research of cancer during the last half century. Extensive studies revealed that curcumin has chemopreventive properties, which are mainly due to its ability to arrest cell cycle and to induce apoptosis in cancer cells either alone or in combination with chemotherapeutic agents or radiation. The underlying action mechanisms of curcumin are diverse and has not been elucidated so far. By regulating multiple important cellular signalling pathways including NF-κB, TRAIL, PI3 K/Akt, JAK/STAT, Notch-1, JNK, etc., curcumin are known to activate cell death signals and induce apoptosis in pre-cancerous or cancer cells without affecting normal cells, thereby inhibiting tumor progression. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. This article reviews the main effects of curcumin on the different apoptotic signaling pathways involved in curcumin induced apoptosis in cancer cells via cellular transduction pathways and provides an in depth assessment of its pharmacological activity in the management of tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号