首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Comparisons of enrichment methods (with or without antibiotics and with or without a preenrichment step) using gram-negative (GN) broth or tryptic soy broth (TSB) were conducted with feeds inoculated with Escherichia coli O157:H7. TSB was more sensitive than GN broth, and TSB with a preenrichment step followed by TSB with antibiotics was more sensitive than plain TSB enrichment, in detecting E. coli O157 in inoculated feeds. Feed samples were collected from feed bunks from 54 feedlots to determine the prevalence of E. coli O157 in cattle feeds. TSB preenrichment followed by TSB with antibiotics and the standard GN broth enrichment were used for each feed sample. All samples underwent immunomagnetic separation and were plated onto sorbitol MacConkey agar with cefixime and potassium tellurite. Identification of E. coli O157 was based on indole production, positive latex agglutination for O157 antigen, API 20E test strip results, PCR for the eaeA gene, and the presence of at least one Shiga toxin. E. coli O157 was detected in 52 of 504 feed samples (10.3%) by using GN broth enrichment and in 46 of 504 feed samples (9.1%) by using TSB followed by TSB supplemented with cefixime and vancomycin. E. coli O157 was detected in 75 of 504 feed bunk samples (14.9%) by one or both methods. There was no correlation between E. coli O157 prevalence and generic coliform counts in feeds. The prevalence of E. coli O157 in cattle feed warrants further studies to increase our knowledge of the on-farm ecology of E. coli O157 in order to develop strategies to prevent food-borne disease in humans.  相似文献   

2.
Pathogenic microorganisms may survive the composting process in low numbers and subsequently regrow to high levels under favorable conditions. The objective of this study was to investigate the regrowth potential of Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes in dairy-based composts under different environmental conditions. Water extract of commercially available dairy compost was used as a model system. Cocktails of five rifampin-resistant strains of each pathogen previously grown in reduced nutrient media (1/2 or 1/10 strength of tryptic soy broth, TSB) were inoculated into water extract of compost of different ratios (1:2,1:5, and 1:10, w/v), and then stored at 35°C or 22°C for 7 days. The strains exhibiting greatest survival or regrowth were identified by pulsed-field gel electrophoresis (PFGE). At 22°C, both E. coli O157:H7 and L. monocytogenes multiplied in all compost extracts, whereas Salmonella spp. regrew in both 1:2 and 1:5 compost extracts but not in 1:10. For all three pathogens, incubation at 22°C provides better conditions for regrowth than at 35°C. Both Salmonella and E. coli O157:H7 previously adapted to nutrient-limited broth (1/10 strength of TSB) regrew in compost extracts to higher populations than the control cultures grown previously in full strength of TSB. In the absence of indigenous microorganisms, all three pathogens regrew even in the most diluted sterile compost extract (1:10) with growth potentials ranging from 2.30 to 3.59 log CFU/ml. In nonsterile compost extract with ca. 5 log CFU/ml of background microorganisms, all three pathogens regrew only in the most concentrated compost extract (1:2) with much less population increases ranging from 0.70 to 1.43 log CFU/ml. Compost extract samples of all ages supported the regrowth of both Salmonella and E. coli O157:H7 with population increases ranging from 0.95 to 2.32 log CFU/ml. The PFGE patterns for E. coli O157:H7 isolates from sterile compost extracts matched with either the spinach outbreak strain or an avirulent B6914 strain. These results demonstrated that compost extract of dairy-based compost contained sufficient nutrients for pathogen regrowth. Cultures previously adapted to low nutrient media regrew to higher populations than control cultures; however, indigenous microflora suppressed the pathogen regrowth in compost extract, especially at 35°C.  相似文献   

3.
In the present study, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were transferred into Luria–Bertani medium without NaCl (LBWS) and adjusted to various pHs (4, 5, 6 and 7) with lactic acid containing 0·75, 5, 10 and 30% NaCl, and stored at 25°C until the bacterial populations reached below detectable levels on tryptic soy agar (TSA). Although Ecoli O157:H7 and S. Enteritidis did not grow on TSA when incubated in LBWS with 30% NaCl for 35 and 7 days, more than 60 and 70% of the bacterial cells were shown to be viable via fluorescent staining with SYTO9 and propidium iodide (PI), respectively, suggesting that a number of cells could be induced into the viable but nonculturable (VBNC) state. These bacteria that were induced into a VBNC state were transferred to a newly prepared tryptic soy broth (TSB) and then incubated at 37°C for several days. After more than 7 days, Ecoli O157:H7 and S. Enteritidis regained their culturability. We, therefore, suggest that Ecoli O157:H7 and S. Enteritidis entered the VBNC state under the adverse condition of higher salt concentrations and were revived when these conditions were reversed.  相似文献   

4.
Salmonella enterica and Escherichia coli O157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of both S. enterica and E. coli O157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like family Myoviridae. In vitro adsorption assays showed that the adsorption constant rates to both Salmonella enterica serovar Typhimurium and E. coli O157:H7 were 2.50 × 10−8 ml/min and 1.91 × 10−8 ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinary Myoviridae phages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 in S. Typhimurium and E. coli O157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10−2 CFU/ml for S. Typhimurium and 4.58 × 10−5 CFU/ml for E. coli O157:H7 were found, indicating that SFP10 should be active and stable for control of E. coli O157:H7 with minimal emergence of SFP10-resistant pathogens but may not be for S. Typhimurium. Specific mutation of rfaL in S. Typhimurium and E. coli O157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologous Salmonella Vi01 and Shigella phiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition of Salmonella Typhimurium and E. coli O157:H7 by a single bacteriophage.  相似文献   

5.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

6.
Lactic acid bacteria (LAB) exert antagonistic activities against diverse microorganisms, including pathogens. In this work, we aimed to investigate the ability of LAB strains isolated from food to produce biofilms and to inhibit growth and surface colonization of Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 at 10°C. The ability of 100 isolated LAB to inhibit EHEC O157:H7 NCTC12900 growth was evaluated in agar diffusion assays. Thirty-seven LAB strains showed strong growth inhibitory effect on EHEC. The highest inhibitory activities corresponded to LAB strains belonging to Lactiplantibacillus plantarum, Pediococcus acidilactici and Pediococcus pentosaceus species. Eighteen out of the 37 strains that showed growth inhibitory effects on EHEC also had the ability to form biofilms on polystyrene surfaces at 10°C and 30°C. Pre-established biofilms on polystyrene of four of these LAB strains were able to reduce significantly surface colonization by EHEC at low temperature (10°C). Among these four strains, Lact. plantarum CRL 1075 not only inhibited EHEC but also was able to grow in the presence of the enteric pathogen. Therefore, this strain proved to be a good candidate for further technological studies oriented to its application in food-processing environments to mitigate undesirable surface contaminations of E. coli.  相似文献   

7.
A multiplex fluorogenic PCR assay for simultaneous detection of pathogenic Salmonella strains and Escherichia coli O157:H7 was developed and evaluated for use in detecting very low levels of these pathogens in meat and feces. Two sets of primers were used to amplify a junctional segment of virulence genes sipB and sipC of Salmonella and an intragenic segment of gene eae of E. coli O157:H7. Fluorogenic reporter probes were included in the PCR assay for automated and specific detection of amplified products. The assay could detect <10 CFU of Salmonella enterica serovar Typhimurium or E. coli O157:H7 per g of meat or feces artificially inoculated with these pathogens and cultured for 6 to 18 h in a single enrichment broth. Detection of amplification products could be completed in ≤4 h after enrichment.  相似文献   

8.
Aims: To (i) study the serogroup distribution and virulence characteristics of non‐sorbitol‐fermenting Escherichia coli isolates from foods of animal origin and cattle faeces and (ii) re‐examine the true sorbitol and β‐d ‐glucuronidase (GUD) reactions of sorbitol‐negative (Sor?) strains from MacConkey sorbitol agar (SMAC) to assess their phenotypic similarity with E. coli O157. Methods and Results: One hundred and thirty Sor?E. coli were isolated from 556 food samples and 177 cattle stool samples using cefixime tellurite–supplemented SMAC (CT‐SMAC) and chromogenic HiCrome MS.O157 agar respectively. Based on typing of somatic antigen, the isolates were classified into 38 serogroups. PCR results identified about 40% strains, belonging to O5, O8, O20, O28, O48, O60, O78, O82, O84, O101, O110, O123, O132, O156, O157, O‐rough and OUT as Shiga toxigenic. Majority of O5, O84, O101, O105, O123, O157, O‐rough and OUT strains were enterohaemolytic. Further, 39·2% and 63·1% of Sor? isolates from CT‐SMAC fermented sorbitol in phenol red broth and hydrolysed 4‐methylumbelliferyl‐β‐d ‐glucuronide (MUG) respectively. Members of serogroups O5, O28, O32, O81, O82, O84, O101, O‐rough lacked both the sorbitol fermentation (broth test) and GUD activity and might create confusion in phenotypic identification of E. coli O157. Conclusions: Sor?E. coli isolates from raw meat, milk, shrimp and cattle stool belonged to 38 serogroups, with E. coli O157 constituting only 14·6% of the isolates. Many of these nonclinical Sor? strains were potentially pathogenic. Nearly 39% of these Sor?E. coli from CT‐SMAC fermented sorbitol in broth, indicating the need for confirmation of sorbitol reaction in broth. Significance and Impacts of the Study: Classical sorbitol utilization and GUD tests are not likely definitive tests for E. coli O157. Further improvement of differential media based on these phenotypic properties is necessary for detection of pathogenic serotypes from foods and environmental samples.  相似文献   

9.
Aims:  To identify lactic acid bacteria (LAB) colonies isolated from sediments of a coastal marsh by the reduction of 2,3,5‐triphenyltetrazolium chloride (TTC) in MRS medium. Methods and Results:  Single colonies isolated from sediments of a coastal marsh by enrichment in MRS broth were selected from MRS‐TTC plates and classified according to colony phenotype based on TTC reduction. A total of 37 colonies grouped in seven different phenotypes were identified by analysis of its 16S ribosomal gene sequence. Most isolates belonged to the Firmicutes phylum, mainly to orders Bacillales and Lactobacillales. LAB were represented by 20 isolates, 15 of which belong to the genus Weissella. Conclusions:  Enrichment in MRS was highly selective for the isolation of bacteria belonging to phylum Firmicutes. Several different phenotypes were developed by LAB and must be considered during LAB isolation based on TTC reduction. Significance and Impact of the Study:  To our knowledge, this is the first study aimed at determining a relationship between colony phenotype from TTC reduction and a partial identification of isolates based on 16S ribosomal gene sequence similarities. Besides, this is the first report of isolation of W. cibaria from environmental samples.  相似文献   

10.
Aim: The pathogen growth in dairy compost was studied in a greenhouse setting under different seasons. Methods and Results: The five‐strain mixtures of each Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes were inoculated separately into dry compost to yield c. 1 log CFU g?1. After acclimation at room temperature, the inoculated compost was initially adjusted to moisture levels of 10–50% and then kept in a greenhouse under different seasons. The populations of all three pathogens increased by 2·1–3·9 log CFU g?1 within 3 days in autoclaved compost with initial moisture content of at least 40%. Listeria monocytogenes multiplied up to 2·4 log CFU g?1 in compost with initial moisture content of 30% and was detected up to 28 days for all seasons, whereas populations of both E. coli O157:H7 and Salmonella increased by c. 1 log in compost with initial moisture content of 30% during winter months only. No pathogen growth in nonautoclaved compost was detected. Conclusion: Bacterial species, temperature, light intensity and moisture content affected the growth potential and survival of pathogens in compost when the population of background microflora was low. Significance and Impact of the Study: Keeping compost as dry as possible and maintaining certain levels of background microflora may be critical to prevent the growth of pathogens.  相似文献   

11.
Aims: To determine the effects of urine, a urease inhibitor and/or an odour‐reducing antimicrobial compound, on zoonotic pathogens in swine manure slurries. Methods and Results: Swine faeces were collected and blended with different amounts of urine. Marker strains of Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli O157:H7 were inoculated into the manure slurries with or without the urease inhibitor, N‐(n‐butyl) thiophosphoric triamide, or the antimicrobial compound thymol. In slurries containing approximately 1 : 1 or 2 : 1 of urine and faeces, the decreases in colony forming units (CFU) of Salm. Typhimurium and E. coli were similar and few counts were observed after 14 days. When the urine content of the slurry was increased to 5 : 1, both strains died off rapidly. When NBPT was added to the slurries, pathogen CFU was not affected in the 1 : 1 slurry. The 2 : 1 and 5 : 1 slurries had higher urea content and NBPT increased CFU of both pathogens. Thymol addition rapidly killed the pathogens and few CFU of Salmonella or E. coli were observed after day 1. Conclusions: These experiments demonstrate that urea hydrolysis in swine manure affects pathogens. Inhibition of urea hydrolysis may promote pathogen viability. Significance and Impact of the Study: Manure amendments that prevent urea hydrolysis may promote pathogen persistence. Additional treatments with antimicrobials may be required to kill pathogens.  相似文献   

12.
Aim: To determine growth initiation differences of Listeria monocytogenes between a cheesemaking context, milk and tryptic soy broth (TSB). Methods and Results: A laboratory‐scale cheese was made with a mix of two strains of L. monocytogenes at four initial pH values, five water activity (aw) values and two contamination levels at 30°C. Counts of L. monocytogenes were determined at time 0 and after 8 h of cheese manufacture. Milk and TSB at the same pH and aw conditions were inoculated with the L. monocytogenes mix in multi‐well plates. Growth was determined by plating each well onto Agosti & Ottaviani Listeria Agar after 8 h of incubation at 30°C. Each condition was repeated six times, and growth initiation probability was modelled with logistic regression models. Growth initiation boundaries were obtained for each matrix type. The results showed that the growth limits were matrix dependent. In the three matrix types, aw was the most important factor affecting the probability of growth initiation. Contamination level affected growth TSB and cheesemaking conditions. Conclusions: The interface wideness and position in cheese, milk and TSB were dissimilar, indicating that the use of models evaluated in TSB or milk could not be used to predict the behaviour of L. monocytogenes under cheesemaking conditions. Significance and Impact of the Study: Predictive models generated in liquid media are not necessarily adaptable to solid food, and the generation of real food models is necessary.  相似文献   

13.
Aims: A public beach was frequently cited for health advisories because of high Escherichia coli levels, the source suspected to be a paper mill located upstream. This investigation sought to confirm whether or not the paper mill was the pollution source, and to characterize the risk to recreational bathers imposed by the source. Methods and Results: Quantification of E. coli in river water collected at incremental distances showed that paper mill effluent caused elevated E. coli levels in beach samples. Samples collected throughout the mill were variably positive for heterotrophic bacteria, total coliforms and E. coli, but negative for pathogenic E. coli O157 and Salmonella. Escherichia coli O157 or Salmonella spiked into mill samples (4·2 log10 or 5·6 log10 CFU per 100 ml, respectively) fell below detection levels within 14–24 h in raw (unaltered) samples, while in heat‐sterilized replicates, the counts remained at initial levels or increased over 36 h. Conclusions: Pathogenic E. coli O157 and Salmonella were not isolated from paper mill samples. The absence of native bacteria allowed the survival of pathogens, while their presence accelerated pathogen decline. Significance and Impact of the Study: The co‐existence of paper mill and swimming beach may be reasonable for now in spite of the limitations of an E. coli‐based assay for beach water.  相似文献   

14.
Aims: To evaluate the outer membrane porin F gene (ompF) for the specific detection of Salmonella species by real‐time PCR assay. Methods and Results: Two hundred and eighteen isolates belonging to Salmonella enterica (subspecies I‐VI) and Salmonella bongori were examined using primers designed to detect the ompF gene. The DNA of the bacteria was extracted from pure culture. The target was present in all the 218 Salmonella isolates including all the subspecies of Salm. enterica and Salm. bongori. The ompF gene was absent in 180 non‐Salmonella strains tested. The limit of detection was determined to be three colony forming units per reaction in pure culture. In artificially contaminated food experiments with ten or less colony forming units per 25 g, the assay was successful in identifying the target in 100% of the samples after 22‐ to 24‐h incubation in enrichment broth. Conclusions: Based on this study, the ompF gene is 100% inclusive for Salmonella species and 100% exclusive for non‐Salmonella species for the strains tested. Significance and Impact of the Study: ompF gene was present in all the Salmonella strains tested and has the potential to be a good target for the rapid molecular identification of Salmonella.  相似文献   

15.
A competitive exclusion (CE) culture of porcine cecal bacteria was developed as a continuous-flow culture in chemostats, was designated RPCF, and was used as a model to determine its usefulness against in vitro colonization by Salmonella enterica serovars Typhimurium and Choleraesuis, Escherichia coli strain F-18, and E. coli serotype O157:H7 (933). Chemostats with or without RPCF were inoculated with 106 colony-forming units (CFU)/ml of Typhimurium, Choleraesuis, F-18, or O157:H7. Chemostats were sampled for salmonellae and E. coli at 15 min, 7 h, and every 24 h thereafter. In control chemostats without RPCF, Typhimurium, Choleraesuis, F-18, and O157:H7 rapidly established colonization and had concentrations of 106 CFU/ml for 96–120 h post-inoculation. In the chemostats that contained RPCF, reductions (P < 0.05) of Choleraesuis, F-18, and O157:H7 were observed at 24 h post-inoculation. Typhimurium was decreased (P < 0.05) at 48 h post-inoculation, and by 120 h post-inoculation, all chemostats were negative for the four challenge microorganisms. These results demonstrate that RPCF cultures were able to inhibit the growth of Typhimurium, Choleraesuis, and E. coli strains F-18 and O157:H7 in vitro and suggest the potential for the use of CE in swine to prevent disease induced by these microorganisms. Received: 2 October 2001 / Accepted: 31 December 2001  相似文献   

16.
DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4–5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic‐membrane‐located inhibitor of proton‐driven F1F0 ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin‐resistant (NovR) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with NovR gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug‐treated bacteria. The Salmonella cytosol reaches pH 5–6 in response to an external pH of 4–5: the ATP‐dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP‐dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid‐mediated impairment of the negative supercoiling activity of gyrase.  相似文献   

17.
The effects of the β-agonist ractopamine, approved for use in finishing swine and cattle to improve carcass quality and performance, were examined on two important foodborne pathogens, Escherichia coli O157:H7 and Salmonella. Ractopamine, administered to sheep before and after oral inoculation with E. coli O157:H7, increased (P < 0.01) fecal shedding and tended to increase (P = 0.08) cecal populations of the challenge strain. Pigs receiving ractopamine in the diet and then experimentally infected with Salmonella Typhimurium, had decreased (P < 0.05) fecal shedding and fewer (P = 0.05) liver samples positive for the challenge strain of Salmonella. Pure cultures of E. coli O157:H7 (used in the present sheep study), E. coli O157:H19 (isolated from pigs with postweaning diarrhea), Salmonella Typhimurium (used in the present pig study), and Salmonella Choleraesuis were incubated with varying concentrations of ractopamine to determine if ractopamine has a direct effect on bacterial growth. No differences in growth rate were observed for either strain of E. coli or for Salmonella Typhimurium when incubated with increasing concentrations of ractopamine. The growth rate for Salmonella Choleraesuis was increased with the addition of 2.0 μg ractopamine/ml compared with the other concentrations examined. Collectively, these results indicate that ractopamine may influence gut populations and fecal shedding of E. coli O157:H7 and Salmonella. Because ractopamine is currently approved to be fed to finishing cattle and swine immediately before slaughter, any potential for decreasing foodborne pathogens has exciting food safety implications. Mention of trade names, proprietary products, or specific equipment does not constitute a guarantee or warranty by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

18.
Aim: To investigate the effect of curli expression on cell hydrophobicity, biofilm formation and attachment to cut and intact fresh produce surfaces. Methods and Results: Five Escherichia coli O157:H7 strains were evaluated for curli expression, hydrophobicity, biofilm formation and attachment to intact and cut fresh produce (cabbage, iceberg lettuce and Romaine lettuce) leaves. Biofilm formation was stronger when E. coli O157:H7 were grown in diluted tryptic soy broth (1 : 10). In general, strong curli‐expressing E. coli O157:H7 strains 4406 and 4407 were more hydrophobic and attached to cabbage and iceberg lettuce surfaces at significantly higher numbers than other weak curli‐expressing strains. Overall, E. coli O157:H7 populations attached to cabbage and lettuce (iceberg and Romaine) surfaces were similar (P > 0·05), indicating produce surfaces did not affect (P < 0·05) bacterial attachment. All E. coli O157:H7 strains attached rapidly on intact and cut produce surfaces. Escherichia coli O157:H7 attached preferentially to cut surfaces of all produce types; however, the difference between E. coli O157:H7 populations attached to intact and cut surfaces was not significant (P > 0·05) in most cases. Escherichia coli O157:H7 attachment and attachment strength (SR) to intact and cut produce surfaces increased with time. Conclusions: Curli‐producing E. coli O157:H7 strains attach at higher numbers to produce surfaces. Increased attachment of E. coli O157:H7 on cut surfaces emphasizes the need for an effective produce wash to kill E. coli O157:H7 on produce. Significance and Impact of the Study: Understanding the attachment mechanisms of E. coli O157:H7 to produce surfaces will aid in developing new intervention strategies to prevent produce outbreaks.  相似文献   

19.
The production of malolactic starter cultures requires the obtention of suitably large biomass at low-cost. In this work it was possible to obtain a good amount of biomass, at laboratory scale, of two enological strains of Lb. plantarum, by formulating a culture medium based on whey permeate (WP), a by-product of the cheese industry usually disposed as waste, when this was supplemented with yeast extract (Y), salts (S) and Tween 80 (T) (WPYST). Bacteria grown in WPYST medium exhibited good tolerance to stress conditions of synthetic wine (pH 3.5, ethanol 13% vol/vol). However, when WPYST was added with 8% vol/vol ethanol, cultures inoculated in synthetic wine, showed a lower viability and capacity to consume L-malic acid than when they were cultured in WPYST without ethanol. Subsequently, strains grown in WPYST were inoculated in sterile wine samples (final stage of alcoholic fermentation) of the red varietals Merlot and Pinot noir, and incubated at laboratory scale. Cultures from WPYST, inoculated in Pinot noir wine, showed a better performance than bacteria grown in MRS broth, and exhibited a consumption of L-malic acid higher than 90%. However, cultures from WPYST or from MRS broth, inoculated in sterile Merlot wine, showed a lower survival. This study allowed the formulation of a low-cost culture medium, based on a by-product of the food industry, which showed to be adequate for the growth of two enological strains of Lb. plantarum, suggesting their potentiality for application in the elaboration of malolactic starter cultures.  相似文献   

20.
Aims: To establish the fate of Escherichia coli O157:H7 and Salmonella Typhimurium in manure and manure‐amended agricultural soils under tropical conditions in Sub‐Saharan Africa. Methods and Results: Survival of nonvirulent Ecoli O157:H7 and Salm. Typhimurium at 4 and 7 log CFU g?1 in manure and manure‐amended soil maintained at ≥80% r.h. or exposed to exclusive field or screen house conditions was determined in the Central Agro‐Ecological Zone of Uganda. Maintaining the matrices at high moisture level promoted the persistence of high‐density inocula and enhanced the decline of low‐density inocula in the screen house, but moisture condition did not affect survival in the field. The large majority of the survival kinetics displayed complex patterns corresponding to the Double Weibull model. The two enteric bacteria survived longer in manure‐amended soil than in manure. The 7 log CFU g?1Ecoli O157:H7 and Salm. Typhimurium survived for 49–84 and 63–98 days, while at 4 log CFU g?1, persistence was 21–28 and 35–42 days, respectively. Conclusions: Under tropical conditions, Ecoli O157:H7 and Salm. Typhimurium persisted for 4 and 6 weeks at low inoculum density and for 12 and 14 weeks at high inoculum density, respectively. Significance and Impact of the Study: Persistence in the tropics was (i) mostly shorter than previously observed in temperate regions thus suggesting that biophysical conditions in the tropics might be more detrimental to enteric bacteria than in temperate environments; (ii) inconsistent with published data isothermally determined previously hence indicating the irrelevance of single point isothermal data to estimate survival under dynamic temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号