首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pineal tract of rainbow trout from the pineal end vesicle to the posterior commissure was studied by light and electron microscopy. Five types of nerve fibres (photoreceptor basal process, ganglion cell dendrite, electron-lucent fibre and synaptic vesicles, myelinated and unmyelinated axons) and two modes of synapses (photoreceptor basal process ganglion cell dendrite and axon terminal with synaptic vesicles-photoreceptor basal process synapses) are distinguishable in the proximal region of end vesicle. The two distinct synaptic associations with the photoreceptor basal process suggest two different (excitatory and inhibitory) control of pineal sensory activity. At the distal portion of stalk about two thousand nerve fibres converge into dorsal and ventral bundles. Posterior to the habenular commissure several small branches run out laterally from the ventral bundles to the basal margin of the ependyma, but not into the habenular commissure. The dorsal bundle passes through the dorsal side of the subcommissural organ and runs ventral to the posterior commissure. The pineal tract is composed of unmyelinated axons, electron-lucent nerve fibres and myelinated axons. The number of fibres increases throughout the stalk and reaches the maximum number at the opening of pineal lumen to IIIrd ventricle, however, the number of fibres then decreases through the subcommissural organ and posterior commissure. This increase and decrease of nerve fibres suggest the continuous participation of axonal fibres of pineal nerve cells and the ramification or branching of pineal tract, respectively.  相似文献   

2.
Summary The sensory innervation of the pineal organ of adult Lacerta viridis has been investigated. Some specimens of Lacerta muralis lillfordi were also used. In the pineal epithelium, a small number of nerve cell pericarya of a sensory type are present. They lie either solitary or in small clusters close to the basement membrane. The axons originating from the nerve cell bodies, i. e. the pineal sensory nerve fibers, first course in the intraepithelial nerve fiber layer which is only locally present and contains a restricted number of unmyelinated fibers. In Lacerta viridis, the pineal fibers generally leave the epithelium at the proximal part of the organ proper. They then form small bundles which run along the outer surface of the basement membrane in the leptomeningeal connective tissue covering. At the proximal end of the pineal stalk the single bundles assemble constituting the pineal nerve. In Lacerta muralis the fibers leave the pineal epithelium at the proximal end of the stalk running farther down within the epithelium. Many fibers become myelinated after leaving the pineal epithelium. The pineal nerve runs ventralward in the midplane just caudal to the habenular commissure to which no fibers are given off. Continuing their ventralward course between the habenular commissure and the rostral end of the posterior commissure which is traversed by some of them, the pineal fibers reach the dorsal border of the subcommissural organ. Small separate aberrant pineal bundles traverse the posterior commissure at various more caudal levels. Having reached the dorsal border of the subcommissural organ, part of the pineal fibers continue their ventralward course directly running along the lateral sides of this organ to reach the periventricular nerve fiber layer lateral and ventral to it. A restricted number of fibers first turns in a caudal direction running between the base of the posterior commissure and the base of the subcommissural organ before turning ventralward to reach the periventricular layer. Most probably, pineal fibers do neither join the posterior commissural system nor innervate the subcommissural organ. Once having reached the periventricular layer, some pineal fibers curve in a rostral direction while others, before doing so, send a collateral in a caudal direction. Both, the main fibers and the collaterals, contribute to the formation of the periventricular layer. The sites of termination of the pineal fibers could not be ascertained.From the presence of intraepithelial sensory nerve cell bodies and from literature data on the ultrastructure of pineal neurosensory cells it is concluded that the adult pineal organ of Lacerta has a, although rudimentary, (photo)sensory function. The demonstration by our guest-worker Dr. W. B. Quay, of the intraepithelial presence of a tryptamine compound, probably serotonin, points, moreover, to a secretory function of this organ.In adult Lacerta a well-developed parietal nerve connects the parietal eye with the left lateral habenular nucleus. It traverses the habenular commissure.In gratitude and with admiration this paper is dedicated to Prof. Berta Scharrer and to the memory of Prof. Ernst Scharrer.  相似文献   

3.
Summary The intergeniculate leaflet of the lateral geniculate nucleus is considered to modulate circadian activity rhythms probably mediated by a direct neuronal connection to the suprachiasmatic nucleus. The present study in the gerbil demonstrates, by anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L), the existence of an additional neuronal projection from a subportion of the lateral geniculate nucleus, involving the intergeniculate leaflet, directly to the pineal gland. PHA-L-immunoreactive nerve fibers originating from perikarya at the injection site were located under the optic tract projecting towards the midsagittal plane. Delicate PHA-L-immunoreactive nerve fibers were observed in the posterior paraventricular thalamic nucleus, precommissural nucleus, olivary pretectal nucleus, anterior and posterior pretectal nuclei, and posterior commissure. Single fibers could be followed from the caudal part of the medial habenular nucleus and the pretectal area into the rostral part of the deep pineal gland. Other fibers continued through the posterior commissure into the contralateral hemisphere to terminate in the same structures as on the ipsilateral side. From the posterior commissure, small bundles of thick fibers entered the deep pineal gland where they arborized among the endocrine cells. A few nerve fibers were observed in the habenular commissure and the pineal stalk, but no fibers were identified in the superficial pineal. This direct geniculo-pineal connection suggests that the pineal gland is directly influenced by the optic system.  相似文献   

4.
Summary The parapineal organ of the glass eel (elver) consists of approximately 400 cells and is situated to the left of the connection of the pineal stalk to the third ventricle. A conspicuous nerve tract containing approximately 350 fibers arises from the parapineal organ and runs in spatial relationship to the habenular commissure toward the left habenular nucleus. The dominating cell type of the parapineal organ of the elver is a neuron (sensory neuron) of small diameter provided with atypical cilia (9×2+0, or rarely 8×2+0 types). Well-developed photoreceptor outer segments are lacking, and no interstitial cells of ependymal type have been observed with certainty in the parapineal organ. The axonal processes from the nerve cells form the tract leaving the parapineal organ.The pineal organ proper of the elver consists of photoreceptor cells with well-developed outer segments, interstitial cells of ependymal type, and ganglion cells. Axons from the latter form the pineal tract, which leaves the pineal organ and runs in close contact with the subcommissural organ toward the posterior commissure. The proximal part of the pineal stalk contains only a few photoreceptor cells the outer segments of which are less developed than those of the pineal body and the distal part of the pineal stalk.  相似文献   

5.
Summary Neurons projecting from the brain to the pineal gland via the pineal stalk were investigated in the golden hamster with the use of the retrograde horseradish-peroxidase tracing method both in vivo and in vitro. Labelled perikarya were observed in the medial and lateral habenular nuclei as well as in the posterior commissure. Single cells located in the ependymal lining of the pineal- and suprapineal recesses were also retrogradely labelled. These results show that a distinct central innervation of the pineal gland exists in the golden hamster, in agreement with findings in other mammalian species investigated by means of a similar methodology. In addition, also direct signals from the cerebrospinal fluid to the parenchyma might be conducted via cells located within the ependymal layer of the pineal- and suprapineal recesses.This study was supported by grants from the Deutscher Akademischer Austauschdienst to M.M. (312/dk-4-is), the Deutsche Forschungsgemeinschaft to H.W.K. (Ko 758/2-2, 2-3), and the Carlsberg Foundation  相似文献   

6.
An immunohistochemical study of the pineal gland of the domestic pig was carried out using the antisera raised against vasopressin (VP). The pineal glands were taken from the newborn, 21-day- and 7-month old female pigs. The pig pineal gland is moderately innervated by VP-immunoreactive nerve fibers. They run from the habenular commissure into the connective tissue septa and further into the pineal parenchyma. In the subependymal tissue as well as in the connective tissue septa, the fibers are smooth or with small varicosities and in the parenchyma with large ones. The obtained results point to extrapineal and extraepithalamic source of the fibers. The density of VP-immunoreactive fibers in the pineal gland of 7-month old pigs is higher than in the younger animals.  相似文献   

7.
Nerve fibers connecting the brain with the pineal gland of the Mongolian gerbil (central pinealopetal fibers) were investigated by means of light and electron microscopy. Several myelinated fibers penetrate from the brain into the deep pineal gland, extend further into the pineal stalk and continue to the superficial portion of the pineal gland. In the centripetal direction these fibers were traced to the stria medullaris and to the habenular nuclei, where they turned laterad and then occupied a position immediately ventral to the optic tract. As shown in electron micrographs, lesions of the habenular area led to degeneration of myelinated fibers and nerve boutons in the deep pineal gland, the pineal stalk and the superficial pineal gland. Only boutons containing clear transmitter vesicles (devoid of a dense core) were observed to degenerate after the habenular lesions. On the other hand, removal of the superior cervical ganglia resulted in degeneration of boutons containing small (40 to 60 nm in diameter) dense-core vesicles. Several of the nerve fibers that penetrate into the deep pineal directly from the brain (central fibers) exhibited a positive reaction for acetylcholinesterase (AChE). AChE-positive perikarya were located in the projections of the stria medullaris, the lateral portions of the deep pineal, the area of the posterior commissure, and the periventricular gray of the mesencephalon. Such perikarya were found neither in the pineal stalk nor in the superficial pineal gland. These results present anatomical evidence that the pineal organ of the Mongolian gerbil receives multiple nervous inputs mediated by peripheral autonomic (i.e., sympathetic) nerve fibers, on the one hand, and by central fibers, on the other.  相似文献   

8.
An immunohistochemical study of the pig pineal gland was carried out using polyclonal rabbit antiserum raised against substance P (SP). The pineal glands were taken from the newborn, 21-day- and 7-month-old female pigs. Immunoreactive nerve fibers were observed in the pineal gland as well as in the posterior commissure and habenular areas. The bundles of SP-immunoreactive fibers were also seen in the subependymal layer of the pineal tissue. The single SP-immunoreactive nerve fibers and few small bundles of nerve fibers were located with equal density throughout the pineal gland, in the connective tissue septa and in the parenchyma. SP-immunoreactive cell bodies were observed in the medial habenular nucleus. The obtained results point to this nucleus as one of the central sources of SP innervation in the pig pineal gland. The study did not show any differences in the distribution and the density of SP-immunoreactive nerve fibers between newborn, 21-day- and 7 month-old pigs.  相似文献   

9.
Summary The central projections of the pineal complex of the silver lamprey Ichthyomyzon unicuspis were studied by injection of horseradish peroxidase. The pineal tract courses caudally along the left side of the habenular commissure, and a few fibers penetrate the brain through the caudalmost portion of this commissure. Most of the fibers, however, continue caudally and enter the brain through the posterior commissure. The pineal tract projects bilaterally to the subcomissural organ, the superficial and periventricular pretectum, the posterior tubercular nucleus, the dorsal and ventral thalamus, the dorsal hypothalamus, the optic tectum, the torus semicircularis, the midbrain tegmentum, and the oculomotor nucleus. A few fibers decussate in the tubercular commissure, but the course of these decussate fibers could not be followed owing to the bilateral nature of the projections. No retrogradely labeled cells were found in the brain. With the exception of the projections to the optic tectum and torus semicircularis, the pineal projections in the silver lamprey are similar to those reported in other anamniote vertebrates.  相似文献   

10.
Summary The possible presence of a direct nervous projection from the paraventricular nucleus (PVN) of the hypothalamus to the pineal gland of the rat was investigated by means of the anterograde neuron-tracing method using horseradish peroxidase. The tracer was injected unilaterally into the PVN and the animals were allowed to survive between 12 and 26 h.Numerous peroxidase-positive fibers were observed, ipsilateral to the injection site, in the stria medullaris thalami and could be followed into the medial habenular nucleus and the habenular commissure. From there, fibers penetrated into the deep pineal gland (lamina intercalaris), and further into the pineal stalk. These data support results of previous investigations describing retrograde labeling of the PVN following intrapineal injections of horseradish peroxidase and are in accordance with recent experiments demonstrating an influence of the PVN on electrical and biochemical activity of the pineal gland.  相似文献   

11.
The ultrastructure of the pineal organ was studied in the tropical megachiropteran Rousettus leschenaulti. The pineal lies deep beneath the hemispheres adjacent to the third ventricle and is traversed by the habenular commissure anteriorly. Its parenchyma consists of a uniform population of light and occasional dark pinealocytes which appear to differ only in the degree of cytoplasmic staining. Pinealocytes are characterized by well developed Golgi bodies associated with numerous small vesicles, many mitochondria and polyribosomes, and frequent subsurface cisternae. Lipid droplets and elements of smooth endoplasmic reticulum are scant. Cisternae of granular endoplasmic reticulum are occasionally dilated. A distinct feature is the abundance of clear vesicles in the pinealocyte pericapillary terminals, which also frequently contain granular vesicles and a very large vacuole. The pineal is further characterized by the presence of a small number of glial cells and myelinated nerve fibers. A broad perivascular space investing numerous capillaries contains glial-cell and pinealocyte processes, collagen fibrils and abundant unmyelinated nerve fibers. Tortuous extensions of the perivascular space enter the pineal parenchyma where they come in close proximity to branched intercellular channels or canaliculi characterized by specialized junctions and microvilli. Differences between the pineal of the non-hibernating megachiropteran Rousettus and that of the hibernating microchiropteran bats, and structural similarities to the pineal of tropical rodents are discussed.  相似文献   

12.
Summary Vasopressin and oxytocin were specifically demonstrated in the rat brain using the unlabelled antibody-enzyme method and purification of the first antiserum. Vasopressin and oxytocin fibres extend via the subcommissural organ or habenular commissure into the pineal stalk and terminate in the anterior part of the pineal organ. In addition, immediately adjacent to the subsommissural organ many vasopressin-containing fibres run caudally toward the central grey. These results are discussed in relation to the proposed presence of vasotocin in the pineal gland.This study was supported by the Foundation for Medical Research, FUNGOThe authors wish to thank Dr. D.F. Swaab and Prof. J. Ariëns Kappers for their suggestions and critical remarks  相似文献   

13.
Summary The pineal organ of the dogfish,Scyliorhinus canicula, is a long, thin, tubular structure consisting of an end-vesicle and a stalk. The pineal parenchyma consists of receptor cells, glycogen-storing cells, supporting cells, cells containing dense granules of 1,500–3,000 Å diameter, cytosome-rich cells, and ganglion cells. The latter alledgedly give rise to the diffusely distributed pineal tract which runs to the posterior commissure. A few pineal fibres diverge to the habenular commissure. The receptor cells have well-developed outer segments with morphological features characteristic of the retinal cone. Interaction between receptor cells and ganglion cells take place in neuropil-like areas. Boutons are found which are believed to belong to the receptor cells because of the presence of occasional synaptic rods. The few synapses observed always display synaptic vesicles both pre- and post-synaptically. The functional significance of the reported morphological features is discussed with the aid of the pertinent literature and it is postulated that the pineal organ of the dogfish is a photosensitive organ.Work done with the aid of a research scolarship from the Alexander von Humboldt Foundation, Bad Godesberg, Germany. — The animal material was provided by the Stazione Zoologica di Napoli, Italy, and by the Biologische Anstalt, Helgoland, Germany. — The electron microscope used in this study was placed at the disposal of Prof.Oksche by the Deutsche Forschungsgemeinschaft.  相似文献   

14.
Summary The pineal complex of the teleost, Phoxinus phoxinus L., was studied light-microscopically by the use of the indirect immunocytochemical antiopsin reaction and the histochemical acetylcholinersterase (AChE) method.Opsin-immunoreactive outer segments of photoreceptor cells were demonstrated in large numbers in all divisions of the pineal end-vesicle and in the pineal stalk. Moreover, they were found in the roof of the third ventricle, adjacent to the orifice of the pineal recess as well as scattered in the parapineal organ. These immunocytochemical observations provide direct evidence of the presence of an opsin associated with a photopigment in the photosensory cells of the pineal and parapineal organs of Phoxinus. By means of the AChE reaction (Karnovsky and Roots 1964) inner segments of pineal photoreceptors, intrinsic nerve cells, several intrapineal bundles of nerve fibers, and a prominent pineal tract were specifically marked. The pineal neurons can be divided into two types: one is located near the pineal lumen, the other near the basal lamina. The latter perikarya bear stained processes directed toward the photoreceptor layer. A rostral aggregation of two types of AChE-positive nerve cells occurs in the ventral wall of the pineal end-vesicle. The main portion of the AChE-positive pineal tract, which lies within the dorsal wall of the pineal stalk, can be followed to the posterior commissure where some of the nerve fibers course laterally. A few AChE-positive pineal nerve fibers run toward the lateral habenular nucleus via the habenular commissure. In the region of the subcommissural organ single AChE-positive neurons accompany the pineal tract. The nerve cells of the parapineal organ exhibit a moderate AChE activity.These findings extend the structural basis for the remarkable light-dependent activity of the pineal organ of Phoxinus phoxinus. To the memory of Professor Karl von Frisch, pioneer and master in the field of photoneuroendocrine systemsThis investigation was supported by grants from the Deutsche Forschungsgemeinschaft to A.O. (Ok 1/24; 1/25: Mechanismen biologischer Uhren) and to H.-W. K. (Ko 758/1; 758–2)On leave from the 2nd Department of Anatomy, SOTE, Budapest, Hungary  相似文献   

15.
Summary This investigation is concerned with pineal organs of human embryos 60 to 150 days old. At every stage central nerve fibres enter the pineal organ by way of the habenular commissure, but are restricted to the pineal's proximal part. On about the 60th day of the development the sympathetic nervus conarii grows into the distal pole of the pineal organ from a dorso-caudal direction and plays the predominant part in the innervation of the pineal organ. After penetrating, it soon branches out and forms a network in the pineal tissue. Much later, not until the 5th embryonic month, sympathetic nerves appear accompanying the supplying vessels in the perivascular spaces. After a short time these nerves pierce the outer limiting basement membrane and penetrate the parenchyma. Towards the end of the 5th embryonic month the axons of the sympathetic nerves form varicosities containing clear and dense core vesicles. At this point large amounts of laminated granules appear primarily in cell processes, probably of pinealocytes. Isolated granules also occur in the varicosities of axons. The granules encountered here are most likely secretory granules.Dedicated to Professor Bargmann on his 65th birthday.  相似文献   

16.
Summary Serotonin-like immunoreactivity was investigated in the pineal complex of the golden hamster by use of the indirect immunohistochemical technique. The superficial and deep portions of the pineal gland, and also the pineal stalk exhibited an intense cellular immunoreaction for serotonin. In addition, perivascular serotonin-immunoreactive nerve fibers were observed. Some serotonin-immunoreactive processes of the pinealocytes terminated on the surface of the ventricular lumen in the pineal and suprapineal recesses, indicating a receptive or secretory function of these cells. Several serotonin-immunoreactive processes connected the deep pineal with the habenular area. One week after bilateral removal of both superior cervical ganglia the serotonin immunoreaction of the entire pineal complex was greatly decreased. However, some cells in the pineal complex, of which several exhibited a neuron-like morphology, remained intensively stained after ganglionectomy. This indicates that the indoleamine content of some cells in the pineal complex of the golden hamster is independent of the sympathetic innervation.Supported by a Grant from the Italian Society for Veterinary Sciences  相似文献   

17.
Summary Intraventricular blood vessels and choroidal-like cells were studied using scanning electron microscopy and correlative light microscopy. The intraventricular blood vessels were covered on their ependymal surface with a layer of cells essentially identical to the ependyma of the choroid plexus in the gerbil. Similar choroidal-like cells were seen either singly or in clusters associated with the cerebrospinal fluid-contacting pinealocytes of the suprapineal recess. Processes of the cerebrospinal fluid-contacting pinealocytes were seen extending to and making contact with the choroidal-like cells. The intraventricular blood vessels appeared to be derived from the choroid plexus, and typically took one of three courses in and around the surface of the deep pineal: (1) the vessels or their equivalent were located in the suprapineal recess with no indication of penetration into the substance of the deep pineal; (2) the vessels coursed from the suprapineal recess around the anterior surface of the habenular commissure to enter the ventral surface of the deep pineal; or (3) the vessels entered the parenchyma of the deep pineal from its dorsal surface and could be seen coursing through the substance of the gland. The close association between the choroidal-like cells and the intraventricular blood vessels with the deep pineal gland add morphological support for the possibility of interaction between the cerebrospinal fluid, or perhaps the choroid plexus, and the deep pineal gland.  相似文献   

18.
19.
20.
Summary The pineal complex of the three-spined stickleback (Gasterosteus aculeatus L.) was investigated by light and electron microscopy, as well as fluorescence histochemistry for demonstration of catecholamines and indolamines. The pineal complex of the stickleback consists of a pineal organ and a small parapineal organ situated on the left side of the pineal stalk. The pineal organ, including the entire stalk, is comprised mainly of ependymal-type interstitial cells and photoreceptor cells with well-developed outer segments. Both unmyelinated and myelinated nerve fibres are present in the pineal organ. Nerve tracts from the stalk enter the habenular and posterior commissures. A small bundle of nerve fibres connects the parapineal organ and the left habenular body. The presence of indolamines (5-HTP, 5-HT) was demonstrated in cell bodies of both the pineal body and the pineal stalk, and catecholaminergic nerve fibres surround the pineal complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号