首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by the goal of understanding how to most homogeneously fill the lungs with perfluorocarbon for liquid ventilation, we investigate the transport of liquid instilled into the lungs using an intact rabbit model. Perfluorocarbon is instilled into the trachea of the ventilated animal. Radiographic images of the perfluorocarbon distribution are obtained at a rate of 30 frames/s during the filling process. Image analysis is used to quantify the liquid distribution (center of mass, spatial standard deviation, skewness, kurtosis, and indicators of homogeneity) as time progresses. We compare the distribution dynamics in supine animals to those in upright animals for three constant infusion rates of perfluorocarbon: 15, 40, and 60 ml/min. It is found that formation of liquid plugs in large airways, which is affected by posture and infusion rate, can result in a more homogeneous liquid distribution than gravity drainage alone. The supine posture resulted in more homogeneous filling of the lungs than did upright posture, in which the lungs tend to fill in the inferior regions first. Faster instillation of perfluorocarbon results in liquid plugs forming in large airways and, consequently, more uniform distribution of perfluorocarbon than slower instillation rates in the upright animals.  相似文献   

2.
A rat lung model of instilled liquid transport in the pulmonary airways.   总被引:2,自引:0,他引:2  
When a liquid is instilled in the pulmonary airways during medical therapy, the method of instillation affects the liquid distribution throughout the lung. To investigate the fluid transport dynamics, exogenous surfactant (Survanta) mixed with a radiopaque tracer is instilled into tracheae of vertical, excised rat lungs (ventilation 40 breaths/min, 4 ml tidal volume). Two methods are compared: For case A, the liquid drains by gravity into the upper airways followed by inspiration; for case B, the liquid initially forms a plug in the trachea, followed by inspiration. Experiments are continuously recorded using a microfocal X-ray source and an image-intensifier, charge-coupled device image train. Video images recorded at 30 images/s are digitized and analyzed. Transport dynamics during the first few breaths are quantified statistically and follow trends for liquid plug propagation theory. A plug of liquid driven by forced air can reach alveolar regions within the first few breaths. Homogeneity of distribution measured at end inspiration for several breaths demonstrates that case B is twice as homogeneous as case A. The formation of a liquid plug in the trachea, before inspiration, is important in creating a more uniform liquid distribution throughout the lungs.  相似文献   

3.
Liquid can be instilled into the pulmonary airways during medical procedures such as surfactant replacement therapy, partial liquid ventilation, and pulmonary drug delivery. For all cases, understanding the dynamics of liquid distribution in the lung will increase the efficacy of treatment. A recently developed imaging technique for the study of real-time liquid transport dynamics in the pulmonary airways was used to investigate the effect of respiratory rate on the distribution of an instilled liquid, surfactant, in a rat lung. Twelve excised rat lungs were suspended vertically, and a single bolus (0.05 ml) of exogenous surfactant (Survanta, Ross Laboratories, Columbus, OH) mixed with radiopaque tracer was instilled as a plug into the trachea. The lungs were ventilated with a 4-ml tidal volume for 20 breaths at one of two respiratory rates: 20 or 60 breaths/min. The motion of radiodense surfactant was imaged at 30 frames/s with a microfocal X-ray source and an image intensifier. Dynamics of surfactant distribution were quantified for each image by use of distribution statistics and a homogeneity index. We found that the liquid distribution depended on the time to liquid plug rupture, which depends on ventilation rate. At 20 breaths/min, liquid was localized in the gravity-dependent region of the lung. At 60 breaths/min, the liquid coated the airways, providing a more vertically uniform liquid distribution.  相似文献   

4.
Summary Cell suspension-derived protoplasts of albino Petunia hybrida were grown for 10 d at the interface between aqueous culture medium (KM8P) and an oxygenated (10 mbar for 15 min) perfluorocarbon liquid, perfluorodecalin. Protoplasts synthesised new cell walls and divided normally at the perfluorodecalin/culture medium interface, with a mean viability after 10 d of > 92.0%. The mean plating efficiency of protoplasts was elevated by 37% (P<0.05) following culture at the perfluorodecalin/medium interface, but was unaltered by perfluorodecalin or oxygen separately. The mean plating efficiency of protoplasts cultured at the interface was further increased to a maximium of 52% above control, in the presence of oxygenated perfluorodecalin and KM8P medium supplemented with the non-ionic, co-polymer surfactant, Pluronic F-68 at 0.01% (w/v). These findings demonstrate the effectiveness of oxygenated perfluorodecalin for promoting protoplast growth, by facilitating oxygen delivery. The finding that Pluronic F-68 further increased the plating efficiency of protoplasts cultured at the perfluorocarbon/aqueous interface suggests that these agents improve growth through separate, but cumulative, mechanisms.Abbreviations ATP adenosine triphosphate - PFCs perfluorochemicals - STP standard temperature and pressure  相似文献   

5.
Flow limitation in liquid-filled lungs is examined in intact rabbit experiments and a theoretical model. Flow limitation ("choked" flow) occurs when the expiratory flow reaches a maximum value and further increases in driving pressure do not increase the flow. In total liquid ventilation this is characterized by the sudden development of excessively negative airway pressures and airway collapse at the choke point. The occurrence of flow limitation limits the efficacy of total liquid ventilation by reducing the minute ventilation. In this paper we investigate the effects of liquid properties on flow limitation in liquid-filled lungs. It is found that the behavior of liquids with similar densities and viscosities can be quite different. The results of the theoretical model, which incorporates alveolar compliance and airway resistance, agrees qualitatively well with the experimental results. Lung compliance and airway resistance are shown to vary with the perfluorocarbon liquid used to fill the lungs. Surfactant is found to modify the interfacial tension between saline and perfluorocarbon, and surfactant activity at the interface of perfluorocarbon and the native aqueous lining of the lungs appears to induce hysteresis in pressure-volume curves for liquid-filled lungs. Ventilation with a liquid that results in low viscous resistance and high elastic recoil can reduce the amount of liquid remaining in the lungs when choke occurs, and, therefore, may be desirable for liquid ventilation.  相似文献   

6.
Alveolar liquid and protein clearance from normal dog lungs   总被引:9,自引:0,他引:9  
To determine whether liquid and protein clearance from the air spaces and lungs of anesthetized and unanesthetized dogs is the same as in sheep, we quantified these variables at three different time periods (4, 8, and 12 h) by instilling heparinized plasma (3 ml/kg) labeled with 125I-albumin into one lower lobe. Protein clearance, measured from the residual 125I-albumin in the lung homogenate, was slow and monoexponential (approximately 1%/h), similar to our previous data for protein clearance from the lungs in sheep. Lung liquid clearance in dogs, however, was 50% less than in previous experiments in sheep. Residual lung liquid (as percent of instilled) was 88.7 +/- 7.0 at 4 h, 70.5 +/- 9.1 at 8 h, and 64.0 +/- 5.8 at 12 h. At each time period, alveolar protein concentration increased by 0.6 +/- 0.4 g/dl at 4 h, 1.3 +/- 1.2 g/dl at 8 h, and 2.1 +/- 0.8 g/dl at 12 h. This increase in alveolar protein concentration was proportional to the volume of liquid removed from the lungs. beta-Adrenergic agonist therapy with terbutaline (10(-5) M mixed with the instilled plasma) doubled the volume of liquid cleared from the lungs over 4 h, and the alveolar protein concentration increased proportionally. However, lung liquid clearance in dogs that were treated with beta-agonists was proportionally (50%) less than in sheep treated with beta-agonists. The slower liquid clearance in dogs compared with sheep cannot be explained by differences in hemodynamics, pulmonary blood flow, anesthesia, mode of ventilation, or alveolar surface area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Partial liquid ventilation (PLV) with high-specific-weight perfluorocarbon liquids has been shown to improve oxygenation in acute lung injury, possibly by redistributing perfusion from dependent, injured regions to nondependent, less injured regions of the lung. Our hypothesis was that during PLV in normal lungs, a shift in perfusion away from dependent lung zones might, in part, be due to vasoconstriction that could be reversed by infusing sodium nitroprusside (NTP). In addition, delivering inhaled NO during PLV should improve gas exchange by further redistributing blood flow to well-ventilated lung regions. To examine this, we used a single transverse-slice positron emission tomography camera to image regional ventilation and perfusion at the level of the heart apex in six supine mechanically ventilated sheep during five conditions: control, PLV, PLV + NTP, and PLV + NO at 10 and 80 ppm. We found that PLV shifted perfusion from dependent to middle regions, and the dependent region demonstrated marked hypoventilation. The vertical distribution of perfusion changed little when high-dose intravenous NTP was added during PLV, and inhaled NO tended to shift perfusion toward better ventilated middle regions. We conclude that PLV shifts perfusion to the middle regions of the lung because of the high specific weight of perflubron rather than vasoconstriction.  相似文献   

8.
Many medical therapies require liquid plugs to be instilled into and delivered throughout the pulmonary airways. Improving these treatments requires a better understanding of how liquid distributes throughout these airways. In this study, gravitational and surface mechanisms determining the distribution of instilled liquids are examined experimentally using a bench-top model of a symmetrically bifurcating airway. A liquid plug was instilled into the parent tube and driven through the bifurcation by a syringe pump. The effect of gravity was adjusted by changing the roll angle (phi) and pitch angle (gamma) of the bifurcation (phi = gamma =0 deg was isogravitational). Phi determines the relative gravitational orientation of the two daughter tubes: when phi not equal to 0 deg, one daughter tube was lower (gravitationally favored) compared to the other. Gamma determines the component of gravity acting along the axial direction of the parent tube: when gamma not equal to 0 deg, a nonzero component of gravity acts along the axial direction of the parent tube. A splitting ratio Rs, is defined as the ratio of the liquid volume in the upper daughter to the lower just after plug splitting. We measured the splitting ratio, Rs, as a function of: the parent-tube capillary number (Cap); the Bond number (Bo); phi; gamma; and the presence of pre-existing plugs initially blocking either daughter tube. A critical capillary number (Cac) was found to exist below which no liquid entered the upper daughter (Rs = 0), and above which Rs increased and leveled off with Cap. Cac increased while Rs decreased with increasing phi, gamma, and Bo for blocked and unblocked cases at a given Cap > Ca,. Compared to the nonblockage cases, Rs decreased (increased) at a given Cap while Cac increased (decreased) with an upper (lower) liquid blockage. More liquid entered the unblocked daughter with a blockage in one daughter tube, and this effect was larger with larger gravity effect. A simple theoretical model that predicts Rs and Cac is in qualitative agreement with the experiments over a wide range of parameters.  相似文献   

9.

Background  

The loss of perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid.  相似文献   

10.
In this study, the effect of an oxygen carrier, perfluorocarbon, on actinorhodin fermentation by Streptomyces coelicolor A3(2) was investigated using a chemically defined medium in 2 and 20 l bioreactors. The inclusion of 50% (v/v) perfluorocarbon in the fermentation medium resulted in a five-fold increase in the maximum antibiotic concentration. The use of perfluorocarbon also caused remarkable increases in both glucose and oxygen consumption rates. Moreover, the increasing concentrations of perfluorocarbon improved the dissolved oxygen profile by raising the minimum dissolved oxygen concentration. It was found that observed increases in the antibiotic production were linearly related to the volumetric oxygen uptake rates. This result could perhaps be attributed to the enhancement of oxygen transfer in S. coelicolor cultures due to the higher oxygen solubilities of the fermentation medium through inclusion of perfluorodecalin.  相似文献   

11.
Gas exchange is improved during partial liquidventilation with perfluorocarbon in animal models of acute lung injury.The specific mechanisms are unproved. We measured end-expiratory lung volume (EELV) by null-point body plethysmography in anesthetized sheep.Measurements of gas exchange and EELV were made before and after acutelung injury was induced with intravenous oleic acid to decrease EELVand worsen gas exchange. Measurements of gas exchange and EELV wereagain performed after partial liquid ventilation with 30 ml/kg ofperfluorocarbon and compared with gas-ventilated controls. Oxygenationwas significantly improved during partial liquid ventilation, and EELV(composite of gas and liquid) was significantly increased, comparedwith preliquid ventilation values and gas-ventilated controls. Weconclude that partial liquid ventilation may directly recruitconsolidated alveoli in the lung-injured sheep and that this may be onemechanism whereby gas exchange is improved.

  相似文献   

12.
We used the isolated-perfused rat lung model to study the influence of pulmonary ventilation and surfactant instillation on the development of postreperfusion lung microvascular injury. We hypothesized that the state of lung inflation during ischemia contributes to the development of the injury during reperfusion. Pulmonary microvascular injury was assessed by continuously monitoring the wet lung weight and measuring the vessel wall (125)I-labeled albumin ((125)I-albumin) permeability-surface area product (PS). Sprague-Dawley rats (n = 24) were divided into one control group and five experimental groups (n = 4 rats per group). Control lungs were continuously ventilated with 20% O(2) and perfused for 120 min. All lung preparations were ventilated with 20% O(2) before the ischemia period and during the reperfusion period. The various groups differed only in the ventilatory gas mixtures used during the flow cessation: group I, ventilated with 20% O(2); group II, ventilated with 100% N(2); group III, lungs remained collapsed and unventilated; group IV, same as group III but pretreated with surfactant (4 ml/kg) instilled into the airway; and group V, same as group III but saline (4 ml/kg) was instilled into the airway. Control lungs remained isogravimetric with baseline (125)I-albumin PS value of 4.9 +/- 0.3 x 10(-3) ml x min(-1) x g wet lung wt(-1). Lung wet weight in group III increased by 1.45 +/- 0.35 g and albumin PS increased to 17.7 +/- 2.3 x 10(-3), indicating development of vascular injury during the reperfusion period. Lung wet weight and albumin PS did not increase in groups I and II, indicating that ventilation by either 20% O(2) or 100% N(2) prevented vascular injury. Pretreatment of collapsed lungs with surfactant before cessation of flow also prevented the vascular injury, whereas pretreatment with saline vehicle had no effect. These results indicate that the state of lung inflation during ischemia (irrespective of gas mixture used) and supplementation of surfactant prevent reperfusion-induced lung microvascular injury.  相似文献   

13.
Based on a physicochemical property profile, we tested the hypothesis that different perfluorochemical (PFC) liquids may have distinct effects on intrapulmonary PFC distribution, lung function, and PFC elimination kinetics during partial liquid ventilation (PLV). Young rabbits were studied in five groups [healthy, PLV with perflubron (PFB) or with perfluorodecalin (DEC); saline lavage injury and conventional mechanical ventilation (CMV); saline lavage injury PLV with PFB or with DEC]. Arterial blood chemistry, respiratory compliance (Cr), quantitative computed tomography of PFC distribution, and PFC loss rate were assessed for 4 h. Initial distribution of PFB was more homogenous than that of DEC; over time, PFB redistributed to dependent regions whereas DEC distribution was relatively constant. PFC loss rate decreased over time in all groups, was higher with DEC than PFB, and was lower with injury. In healthy animals, arterial PO(2) (Pa(O(2))) and Cr decreased with either PFC; the decrease was greater and sustained with DEC. Lavaged animals treated with either PFC demonstrated increased Pa(O(2)), which was sustained with PFB but deteriorated with DEC. Lavaged animals treated with PFB demonstrated increased Cr, higher Pa(O(2)), and lower arterial PCO(2) than with CMV or PLV with DEC. The results indicate that 1) initial distribution and subsequent intrapulmonary redistribution of PFC are related to PFC properties; 2) PFC distribution influences PFC elimination, gas exchange, and Cr; and 3) PFC elimination, gas exchange, and Cr are influenced by PFC properties and lung condition.  相似文献   

14.
We measured the removal of 100 ml of autologous serum from the air spaces and lungs of unanesthetized, spontaneously breathing sheep at 4, 12, and 24 h. In the first 4 h, there was a rapid clearance of the liquid volume (8.3%/h), similar to our results in anesthetized ventilated sheep (Matthay et al., J. Appl. Physiol. 53: 96-104, 1982). However, liquid removal progressively slowed to 3.3 and 1.4%/h at 12 and 24 h, respectively. In contrast, protein clearance (as measured by 125I-albumin instilled with the serum) was monoexponential and slow (1%/h). The slowing of liquid clearance appears to be a function of the rising protein osmotic pressure of the residual protein in the air spaces (protein concentration doubled in 24 h). Because protein solutions are chemotactic for neutrophils, we quantified the movement of liquid from the extracellular space into the alveolar compartment with a plasma protein tracer (131I-albumin), so that our final calculation of alveolar liquid clearance would take into account bidirectional movement of liquid across the alveolar barrier. The corrected values for net liquid clearance are slightly faster (less than 10% of the instilled volume).  相似文献   

15.
The movement of macromolecules into and out of unventilated lung segments was evaluated in prematurely delivered and ventilated lambs. Seven lambs at 130 days gestational age had a bronchial balloon placed at birth before the first breath to obstruct the left lower lobe. Surfactant and 131I-albumin were instilled into the left lower lobe while surfactant and 125I-albumin were instilled into the remaining lung, and 70,000 molecular weight [3H]dextran was given into the vascular space at birth. Twenty-five percent of the lung by weight was not ventilated, and 24% of the total leak of dextran from the vascular space was recovered in the unventilated lungs at 3 h. An epithelial leak of protein from the two lung regions was documented by the loss of 11.4 and 18.4% of the labeled albumins in the nonventilated and ventilated lung regions, the appearance of 4.9 and 7.5% of the airway-instilled albumin in the vascular space from the nonventilated and ventilated lung regions, and the recovery of the labeled albumins in the carcasses of the lambs. The bidirectional flux of macromolecules was larger in the ventilated than in the nonventilated lung regions, indicating that ventilation can increase the leak of protein in the preterm lung. The lung areas that were never exposed to ventilation or oxygen also demonstrated a large bidirectional flux of macromolecules, a finding not present in the fetus, fullterm newborn, or adult. These findings indicate that ventilation is not solely responsible for the increased protein leak found in preterm lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Pulmonary blood flow distribution during partial liquid ventilation   总被引:3,自引:0,他引:3  
Regionalpulmonary blood flow was investigated with radiolabeled microspheres infour supine lambs during the transition from conventional mechanicalventilation (CMV) to partial liquid ventilation (PLV) and withincremental dosing of perfluorocarbon liquid to a cumulative dose of 30 ml/kg. Four lambs supported with CMV served as controls.Formalin-fixed, air-dried lungs were sectioned according to a grid;activity was quantitated with a multichannel scintillation counter,corrected for weight, and normalized to mean flow. During CMV, flow inapical and hilar regions favored dependent lung(P < 0.001), with no gradient acrosstransverse planes from apex to diaphragm. During PLV the gradientwithin transverse planes found during CMV reversed, most notably in thehilar region, favoring nondependent lung(P = 0.03). Also during PLV, flow wasprofoundly reduced near the diaphragm(P < 0.001), and across transverse planes from apex to diaphragm a dose-augmented flow gradient developed favoring apical lung (P < 0.01). Weconclude that regional flow patterns during PLV partially reverse thosenoted during CMV and vary dramatically within the lung from apex todiaphragm.

  相似文献   

17.
Ventilation with a small tidal volume (V(t)) is associated with better clinical outcomes than with a large V(t), particularly in critical settings, including acute lung injury. To determine whether V(t) influences the lipopolysaccaharide (LPS) recognition pathway, we studied CD14 expression in rabbit lungs and the release of TNF-alpha by cultured alveolar macrophages after 240 min of ventilation with a large (20 ml/kg) vs. a small (5 ml/kg) V(t). We also applied small or large V(t) to lungs instilled with 50 microg/kg of LPS. The alveolar macrophages collected after large V(t) ventilation revealed a 20-fold increase in LPS-induced TNF-alpha release compared with those collected after small V(t) ventilation, whereas TNF-alpha was undetectable without LPS stimulation. In animals ventilated with a large V(t), the expression of CD14 mRNA in whole lung homogenates and the expression of CD14 protein on alveolar macrophages, assessed by immunohistochemistry, were both significantly increased in the absence of LPS stimulation. A large V(t) applied to LPS-instilled lungs increased the pulmonary albumin permeability and TNF-alpha release into the plasma. These results suggest that mechanical stress caused by a large V(t) sensitizes the lungs to endotoxin, a phenomenon that may occur partially via the upregulation of CD14.  相似文献   

18.
The inadequate supply of oxygen to biomass is a critical factor to the productivity of most aerobic submerged fermentations. This happens because oxygen is sparingly soluble in the aqueous media. The use of a second liquid phase of perfluorocarbon (PFC), an oxygen-carrying compound, in the culture medium can increase the availability of oxygen to the microorganisms. The effect of perfluorodecalin on Yarrowia lipolytica cultures was investigated in shake-flask cultures. It was found that the specific growth rate of Y. lipolytica, a strictly aerobic yeast, increases with increasing PFC concentration. Extracellular lipase production was increased with 20% (v/v) of PFC and agitation of 250 rev/min. It was shown that the PFC presence benefitted lipase production and not just its secretion to the extracellular medium.  相似文献   

19.
The regional effects of tidal volume (VT), respiratory frequency, and expiratory-to-inspiratory time ratio (TE/TI) during high-frequency ventilation (HFV) were studied in anesthetized and paralyzed dogs. Regional ventilation per unit of lung volume (spVr) was assessed with a positron camera during the washout of the tracer isotope 13NN from the lungs of 12 supine dogs. From the washout data, functional images of the mean residence time (MRT) of 13NN were produced and spVr was estimated as the inverse of the regional MRT. We found that at a constant VT X f product (where f represents frequency), increasing VT resulted in higher overall lung spV through the local enhancement of the basal spVr and with little effect in the apical spVr. In contrast, increasing VT X f at constant VT increased overall ventilation without significantly affecting the distribution of spVr values. TE/TI had no substantial effect in regional spVr distribution. These findings suggest that the dependency of gas transport during HFV of the form VT2 X f is the result of a progressive regional transition in gas transport mechanism. It appears, therefore, that as VT increases, the gas transport mechanism changes from a relative inefficient dispersive mechanism, dependent on VT X f, to the more efficient mechanism of direct fresh gas convection to alveoli with high regional tidal volume-to-dead-space ratio. A mathematical model of gas transport in a nonhomogeneous lung that exhibits such behavior is presented.  相似文献   

20.
Pneumonia caused by Pseudomonas aeruginosa carries a high rate of morbidity and mortality. A lung-protective strategy using low tidal volume (V(T)) ventilation for acute lung injury improves patient outcomes. The goal of this study was to determine whether low V(T) ventilation has similar utility in severe P. aeruginosa infection. A cytotoxic P. aeruginosa strain, PA103, was instilled into the left lung of rats anesthetized with pentobarbital. The lung-protective effect of low V(T) (6 ml/kg) with or without high positive end-expiratory pressure (PEEP, 10 or 3 cmH(2)O) was then compared with high V(T) with low PEEP ventilation (V(T) 12 ml/kg, PEEP 3 cmH(2)O). Severe lung injury and septic shock was induced. Although ventilatory mode had little effect on the involved lung or septic physiology, injury to noninvolved regions was attenuated by low V(T) ventilation as indicated by the wet-to-dry weight ratio (W/D; 6.13 +/- 0.78 vs. 3.78 +/- 0.26, respectively) and confirmed by histopathological examinations. High PEEP did not yield a significant protective effect (W/D, 4.03 +/- 0.32) but, rather, caused overdistension of noninvolved lungs. Bronchoalveolar lavage revealed higher concentrations of TNF-alpha in the fluid of noninvolved lung undergoing high V(T) ventilation compared with those animals receiving low V(T). We conclude that low V(T) ventilation is protective in noninvolved regions and that the application of high PEEP attenuated the beneficial effects of low V(T) ventilation, at least short term. Furthermore, low V(T) ventilation cannot protect the involved lung, and high PEEP did not significantly alter lung injury over a short time course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号