首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L P Yu  G M Smith 《Biochemistry》1990,29(12):2920-2925
The 15N-enriched ferricytochrome c2 from Rhodospirillum rubrum has been studied by 15N and 1H NMR spectroscopy as a function of pH. The 15N resonances of the heme and ligand tau nitrogen are broadened beyond detection because of paramagnetic relaxation. The 15N resonance of the ligand histidine phi nitrogen was unambiguously identified at 184 ppm (pH 5.6). The 15N resonances of the single nonligand histidine are observed only at low pH, as in the ferrocytochrome because of the severe broadening caused by tautomerization. The dependence of the 15N and 1H spectra of the ferricytochrome on pH indicated that the ligand histidine tau NH does not dissociate in the neutral pH range and is involved in a hydrogen bond, similar to that in the reduced state. Because neither deprotonated nor non-hydrogen-bonded forms of the ligand histidine are observed in the spectra of either oxidation state, the participation of such forms in producing heterogeneous populations having different electronic g tensors is ruled out. Transitions having pKa's of 6.2, 8.6, and 9.2 are observed in the ferricytochrome. The localized conformational change around the omega loops is observed in the neutral pH range, as in the ferrocytochrome. Structural heterogeneity leads to multiple resonances of the heme ring methyl at position 8. The exchange rate between the conformations is temperature dependent. The transition with a pKa of 6.2 is assigned to the His-42 imidazole group. The displacement of the ligand methionine, which occurs with a pKa of 9.2, causes gross conformational change near the heme center.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
15N and 1H NMR studies of Rhodospirillum rubrum cytochrome c2   总被引:1,自引:0,他引:1  
L P Yu  G M Smith 《Biochemistry》1988,27(6):1949-1956
15N-Enriched cytochrome c2 was purified from Rhodospirillum rubrum that had been grown on 15NH4Cl, and the diamagnetic iron(II) form of the cytochrome was studied by 15N and 1H NMR spectroscopy. 15N resonances of the four pyrrole nitrogens, the ligand histidine nitrogens, the highly conserved tryptophan indole nitrogen, and some proline nitrogens are assigned. The resonances of the single nonligand histidine are observed only at low pH because of severe broadening produced by proton tautomerization. The resonances of exchangeable protons bonded to the nitrogens of the ligand histidine, the tryptophan, and some amide groups are also assigned. The exchange rates of the nitrogen-bound protons vary greatly: most have half-lives of less than minutes, the indolic NH of Trp-62 exchanges with a half-time of weeks, and the ligand histidine NH proton exchanges with a half-time of months. The latter observation is indicative of extreme exclusion of solvent from the area surrounding the ligand histidine and lends credence to theories implicating the degree of hydrophobicity in this region as an important factor in adjusting the midpoint potential. The dependence of the 15N and 1H NMR spectra of ferrocytochrome c2 on pH indicates neither the Trp-62 nor the ligand His side chains become deprotonated to any appreciable extent below pH 9.5. The His-18 NH remains hydrogen bonded, presumably to the Pro-19 carboxyl group, throughout the pH titrations. Because neither deprotonated nor non-hydrogen-bonded forms of His-18 are observed in spectra of the ferrocytochrome, the participation of such forms in producing a heterogeneous population having different g tensor values seems unlikely.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
G M Smith 《Biochemistry》1979,18(8):1628-1634
Rhodospirillum rubrum cytochrome c2 was studied by proton nuclear magnetic resonance at 220 MHz. Assignments were made to the resonances of heme c by double-resonance techniques and by temperature-dependence studies. The aromatic resonances of Trp-62 and Tyr-70 of ferrocytochrome c2 were identified by spin-decoupling experiments. The resonances of the Met-91 methyl group of the ferri- and ferrocytochromes were assigned by saturation-transfer experiments. The assignments are compared to those made for cytochromes c. A pH titration showed that the methionine methyl resonance of ferricytochrome c2 shifted with a pK of 6.25 and disappeared above pH 9. No histidine CH resonances that titrated normally over the neutral pH range were observed in the spectrum of either oxidation state of the protein. The possible origins of the ionizations at pH 6.25 and 9 are discussed.  相似文献   

4.
Nuclear magnetic resonance studies of Rhodospirillum rubrum cytochrome c'   总被引:1,自引:0,他引:1  
Cytochrome c' from Rhodospirillum rubrum has been studied by proton magnetic resonance (NMR) at 270 MHz. The pH and temperature-dependence properties as well as proton water relaxation enhancement and bulk susceptibility measurements were examined. We conclude that the fifth ligand to the iron is histidine. The pH-dependent shift of the heme methyl resonances of the ferric protein shows pKa's at 5.8 and 8.7. The low-pH equilibrium causes only minor changes in the properties of the protein. However, the high-pH equilibrium causes large changes throughout the NMR spectra which correlate with the reported visible spectral changes. These NMR spectral changes are compared with the low-temperature EPR and M?ssbauer spectroscopic data. Analyses of the NMR data show that a second histidine, which is present in the sequence of c' from R. rubrum but is not conserved in other cytochromes c', is not a "distal" histidine. The nature of the sixth ligand and the significance of the high-pH transition are discussed.  相似文献   

5.
Three-quarters of the carbon-13 resonances of nuclei attached to the four haems of Desulfovibrio uulgaris ferricytochrome c3 are assigned. Preliminary analysis of their Fermi contact interactions shows that the shifts are directly related to the orientation of both of the axial histidine ligands in each case and the approach can therefore be used to obtain structural information in other cytochromes with bis-histidinyl coordination. The implications for the control of redox potential in cytochromes are discussed.  相似文献   

6.
Ferricytochromes c from three species (horse, tuna, yeast) display sensitivity to variations in solution ionic strength or pH that is manifested in significant changes in the proton NMR spectra of these proteins. Irradiation of the heme 3-CH3 resonances in the proton NMR spectra of tuna, horse and yeast iso-1 ferricytochromes c is shown to give NOE connectivities to the phenyl ring protons of Phe82 as well as to the beta-CH2 protons of this residue. This method was used to probe selectively the Phe82 spin systems of the three cytochromes c under a variety of solution conditions. This phenylalanine residue has previously been shown to be invariant in all mitochondrial cytochromes c, located near the exposed heme edge in proximity to the heme 3-CH3, and may function as a mediator in electron transfer reactions [Louie, G. V., Pielak, G. J., Smith, M. & Brayer, G. D. (1988) Biochemistry 27, 7870-7876]. Ferricytochromes c from all three species undergo a small but specific structural rearrangement in the environment around the heme 3-CH3 group upon changing the solution conditions from low to high ionic strength. This structural change involves a decrease in the distance between the Phe82 beta-CH2 group and the heme 3-CH3 substituent. In addition, studies of the effect of pH on the 1H-NMR spectrum of yeast iso-1 ferricytochrome c show that the heme 3-CH3 proton resonance exhibits a pH-dependent shift with an apparent pK in the range of 6.0-7.0. The chemical shift change of the yeast iso-1 ferricytochrome c heme 3-CH3 resonance is not accompanied by an increase in the linewidth as previously described for horse ferricytochrome c [Burns, P. D. & La Mar, G. N. (1981) J. Biol. Chem. 256, 4934-4939]. These spectral changes are interpreted as arising from an ionization of His33 near the C-terminus. In general, the larger spectral changes observed for the resonances in the vicinity of the heme 3-CH3 group in yeast iso-1 ferricytochrome c with changes in solution conditions, relative to the tuna and horse proteins, suggest that the region around Phe82 is more open and that movement of the Phe82 residue is less constrained in yeast ferricytochrome c. Finally, it is demonstrated here that both the heme 8-CH3 and the 7 alpha-CH resonances of yeast ferricytochrome c titrate with p2H and exhibit apparent pK values of approximately 7.0. The titrating group responsible for these spectral changes is proposed to be His39.  相似文献   

7.
Cholinesterases use a Glu-His-Ser catalytic triad to enhance the nucleophilicity of the catalytic serine. We have previously shown by proton NMR that horse serum butyryl cholinesterase, like serine proteases, forms a short, strong hydrogen bond (SSHB) between the Glu-His pair upon binding mechanism-based inhibitors, which form tetrahedral adducts, analogous to the tetrahedral intermediates in catalysis [Viragh, C., et al. (2000) Biochemistry 39, 16200-16205]. We now extend these studies to human acetylcholinesterase, a 136 kDa homodimer. The free enzyme at pH 7.5 shows a proton resonance at 14.4 ppm assigned to an imidazole NH of the active-site histidine, but no deshielded proton resonances between 15 and 21 ppm. Addition of a 3-fold excess of the mechanism-based inhibitor m-(N,N,N-trimethylammonio)trifluoroacetophenone (TMTFA) induced the complete loss of the 14.4 ppm signal and the appearance of a broad, deshielded resonance of equal intensity with a chemical shift delta of 17.8 ppm and a D/H fractionation factor phi of 0.76 +/- 0.10, consistent with a SSHB between Glu and His of the catalytic triad. From an empirical correlation of delta with hydrogen bond lengths in small crystalline compounds, the length of this SSHB is 2.62 +/- 0.02 A, in agreement with the length of 2.63 +/- 0.03 A, independently obtained from phi. Upon addition of a 3-fold excess of the mechanism-based inhibitor 4-nitrophenyl diethyl phosphate (paraoxon) to the free enzyme at pH 7.5, and subsequent deethylation, two deshielded resonances of unequal intensity appeared at 16.6 and 15.5 ppm, consistent with SSHBs with lengths of 2.63 +/- 0.02 and 2.65 +/- 0.02 A, respectively, suggesting conformational heterogeneity of the active-site histidine as a hydrogen bond donor to either Glu-327 of the catalytic triad or to Glu-199, also in the active site. Conformational heterogeneity was confirmed with the methylphosphonate ester anion adduct of the active-site serine, which showed two deshielded resonances of equal intensity at 16.5 and 15.8 ppm with phi values of 0.47 +/- 0.10 and 0.49 +/- 0.10 corresponding to average hydrogen bond lengths of 2.59 +/- 0.04 and 2.61 +/- 0.04 A, respectively. Similarly, lowering the pH of the free enzyme to 5.1 to protonate the active-site histidine (pK(a) = 6.0 +/- 0.4) resulted in the appearance of two deshielded resonances, at 17.7 and 16.4 ppm, consistent with SSHBs with lengths of 2.62 +/- 0.02 and 2.63 +/- 0.02 A, respectively. The NMR-derived distances agree with those found in the X-ray structures of the homologous acetylcholinesterase from Torpedo californica complexed with TMTFA (2.66 +/- 0.28 A) and sarin (2.53 +/- 0.26 A) and at low pH (2.52 +/- 0.25 A). However, the order of magnitude greater precision of the NMR-derived distances establishes the presence of SSHBs at the active site of acetylcholinesterase, and detect conformational heterogeneity of the active-site histidine. We suggest that the high catalytic power of cholinesterases results in part from the formation of a SSHB between Glu and His of the catalytic triad.  相似文献   

8.
The proton NMR spectra of ferricytochrome c' from Rhodopseudomonas palustris, Rhodospirillum molischianum, Rhodospirillum rubrum, and Chromatium vinosum have been investigated for the purpose of further elucidating the common spectral and/or structural properties for this subclass of cytochromes in the acidic and alkaline forms, and to characterize in detail the dynamics and structural basis for this acid in equilibrium with alkaline transition. The identification of strongly upfield-shifted meso-H peaks in all but C. vinosum ferricytochrome c' at weakly acidic to neutral pH is consistent with, but not proof for, S = 3/2 character for the spin state of C. vinosum, but argues for primarily S = 5/2 character for the other three proteins. Hence, we conclude that the quantum mechanically mixed S = 3/2, S = 5/2 spin ground state of neutral pH C. vinosum ferricytochrome c' is an anomaly rather than a characteristic of this class of proteins. The 1H NMR spectra of ferricytochromes c' at alkaline pH again exhibit strong similarities among all members except that for C. vinosum. Two pK values are observed for ferricytochrome c' for R. molischianum and C. vinosum, of which the higher value pK is accompanied by significant line broadening, as found earlier for the proteins from both R. rubrum and R. palustris. Detailed analysis of the exchange line broadening for all four proteins reveals that hydrolysis is the rate-limiting step, with base catalysis occurring at about the same rate in the diffusion control limit for all four proteins. The variable first order dissociation rates of the alkaline species reveal differential stabilities of that species in the order R. palustris greater than R. molischianum greater than R. rubrum much greater than C. vinosum. The rates of exchange of the axial His imidazole labile proton was determined by linewidth and saturation transfer analysis and shown to occur via base catalysis at the same diffusion control rate as found for the acid----alkaline transition for the oxidized protein, and support the proposal that the acid----alkaline transition involves simply the abstraction of a proton from the neutral His imidazole to yield an imidazolate.  相似文献   

9.
5N1-Labeled hypoxanthine and 1,3-15N-labeled uracil were synthesized chemically and used to prepare labeled yeast tRNAPhe biosynthetically. Maps (500 MHz) of 15N chemical shift vs. proton chemical shift were obtained, for each ring NH group, by means of INDOR (difference heterodecoupling) and also by means of a proton-observe two-dimensional method involving coherences of forbidden resonances of the NH system. Resonances of GC11, T54-m1A58, GU4, and A psi 31 were confirmed, assigned, or reassigned. psi 39 was found to be in anti conformation, not syn as previously stated. Almost all the uracil NH group resonances could be separated, but most of the GC resonances are too close even in two dimensions to be separately resolved with the observed 20-Hz 15N line width.  相似文献   

10.
Rhodospirillum rubrum cytochrome c2 was uniformly enriched in 15N and studied by 1H- and 15N-NMR spectroscopy. Relaxation and NOE data allowed determination of the rotational correlation time and indicated more rapid side-chain motion in the native protein and increased segmental motion in the base-denatured protein. The pi nitrogen of the ligand histidine and the indolic nitrogen of the invariant tryptophan both remain protonated and act as proton-donors in hydrogen bonds over a wide pH range and therefore do not contribute to pH-related changes in the midpoint potential. pK values identified by numerous methods in the ferrocytochrome at pH 6.9 and in the ferricytochrome at pH 6.2 arise from His-42. At pH values below the pK, the imidazolium group participates in a salt bridge or in a hydrogen bond with the carboxylate group of the inner propionate of the heme. Loss of the proton causes a local conformational change which alters the midpoint potential. The pK values of the amino terminus and lysines were also determined from pH titrations monitored by 15N-NMR. Similar titrations of the ferricytochrome monitored by 1H-NMR showed structural heterogeneity in that the resonance of heme ring methyl 8 split into a doublet as the pH was raised.  相似文献   

11.
H Santos  D L Turner 《FEBS letters》1986,194(1):73-77
The 13C and proton chemical shifts of the 55 methyl groups of horse cytochrome c have been determined over a range of temperatures both in the diamagnetic ferrocytochrome and in the paramagnetic ferricytochrome. Specific assignments of many proton resonances have been published previously and all of the remaining methyl proton resonances are now specifically assigned. The corresponding 13C assignments follow directly, including those of contact shifted 13C resonances which are reported for the first time.  相似文献   

12.
The histidine C-2 proton NMR titration curves of ribonuclease S-peptide (residues 1 to 20) and S-protein (residues 21 to 124) are reported. Although S-protein contains 3 histidine residues, four discrete resonances are observed to titrate. One of these arises from the equivalent histidine residues of unfolded S-protein. The variation in area of the four resonances indicate that there is a reversible pH-dependent equilibrium between the folded and unfolded forms of S-protein, with some unfolded material being present at most pH values. Two of the resonances of the folded S-protein can be assigned to 2 of the histidine residues, 48 and 105, from the close similarity of their titration curves to those in ribonuclease. These similarities indicate a homology of portions of the folded conformation of S-protein to that of ribonuclease in solution. These results indicate that the complete amino acid sequence is not required to produce a folded conformation similar to the native globular protein, and they appear to eliminate the possibility that proteins fold from their NH2 terminus during protein synthesis. The low pH inflection present in the titration curve assigned to histidine residue 48 in ribonuclease is absent from this curve in S-protein. This is consistent with our previous conclusion that this inflection arises from the interaction of histidine 48 with aspartic acid residue 14, which is also absent in S-protein. The third titrating resonance of native S-protein is assigned to the remaining histidine residue at position 119. The properties of this resonance are not identical with either of the titration curves of the active site histidine residues 12 and 119 of ribonuclease. The resonance assigned to histidine 119 is the only one significantly affected on the addition of sodium phosphate to S-protein, indicating that some degree of phosphate binding occurs. In both the absence and presence of phosphate this curve also lacks the low pH inflection observed in the histidine 119 NMR titration curve in ribonuclease. This difference presumably arise from a conformational between ribonuclease and the folded S-protein involving a carboxyl group.  相似文献   

13.
The ionization constants of 3 of the histidine residues of ribonuclease A have beenobtained at 5 temperatures from the nuclear magnetic resonance titration curves of the imidazole C2 proton resonances. Thermodynamic parameters derived from the ionization constants indicate that histidine residues 105 and 119 are fairly well exposed to solvent, while histidine residue 12 is in a somewhat more restricted environment. Measurements of the low pH inflection present in the titration curve of histidine-12 yield a large negative entropy value, indicating that the group givine rise to this inflection is also buried.  相似文献   

14.
Natural abundance 15N NMR spectroscopy and ancillary spectroscopic techniques have been employed to study the solution structure of 8-hydroxyadenosine. 8-Hydroxyadenosine is a naturally occurring oxidized nucleic acid adduct that is generally implied to have an 8-hydroxy tautomeric structure. 15N NMR chemical shifts and coupling constants, however, indicate that the modified base exists as an 8-keto tautomer. The pH dependence of 15N NMR and UV spectra showed the presence of two pKa's, at 2.9 and 8.7, corresponding to protonation at N1 and ionization at N7, respectively. The latter results in the formation of an 8-enolate structure. Unusual upfield shifts of the 1H and 15N resonances of the NH2 group, and a reduction in the one-bond coupling constant 1JN6-H6, is indicative of an unfavorable steric or electronic interaction between the NH2 group and the adjacent N7-H proton. This interaction results in a subtle change in the structure of the NH2 group. In addition to being a possible mechanism for alteration of hydrogen bonding in oxidized DNA, this type of interaction gives a better understanding into N7-N9 tautomerism of adenine. Furthermore, the structure of 8-hydroxyadenosine has been related to possible mechanisms for mutations.  相似文献   

15.
J M Pesando 《Biochemistry》1975,14(4):681-688
The seven resonances observed in the histidine region of the proton magnetic resonance (pmr) spectrum of human carbonic anhydrase B and reported in the preceding paper are studied in the presence of sulfonamide, azide, cyanide, and chloride inhibitors and in metal-free, cadmium substituted, cobalt substituted, and carboxymethylated forms of the enzyme. Results indicate that the two resonances that move-downfield with increasing pH and the two that do not move with pH reflect residues located at the active site. The first two resonances are assigned to the same titratable histidine whose pK value of 8.24 corresponds to that of the group controlling catalytic activity. Addition of anions or sulfonamides, removal of zinc, or substitution of cadmium for zinc at the active site, procedures known to abolish enzymatic activity, prevent titration of this residue. Partial inhibition of carbonic anhydrase by chloride slectively increases the pK value of the group controlling catalytic activity and of the histidine with pK equals 8.24. Experiments with metal-free and cadmium carbonic anhydrases and comparisons with model systems suggest that this histidine is bound to the metal ion at high pH; at low pH this complex appears to dissociate as protons compete with the metal for the imidazole group. It is proposed that ionization of the group controlling catalytic activity represents loss of the pyrrole proton of this neutral ligand when it binds to Zn(II), forming an imidazolate anion and juxtaposing a strong base and a powerful Lewis acid at the active site. When bound to zinc as an anion, this histidine can act as a general base catalyst in the hydration of carbon dioxide and be replaced as a metal ligand by an oxygen of the substrate in the course of the reaction. The histidine-metal complex is thought to exist in a strained configuration in the active enzyme so that its imidazole-metal bond is readily broken on addition of substrates or inhibitors. This model is consistent with the available data on the enzyme and is discussed in relation to alternative proposals.  相似文献   

16.
Proton NMR studies of Saccharomyces cerevisiae (bakers yeast) isozyme-1 monomer and dimer ferricytochrome c have been carried out. The dimer is formed via a disulfide bridge between the Cys-102 residues of monomer proteins. Nuclear Overhauser effect (NOE) experiments have led to resonance assignments for many of the heme and axial ligand (Met-80; His-18) protons in both protein forms. Resonances of the following amino acids have also been assigned in both forms: Phe-10; Pro-30; Phe-82; Trp-59; Leu-68. The proton NOE connectivity patterns of the monomer of yeast isozyme-1 ferricytochrome c are similar to those of horse, tuna, and yeast isozyme-2 ferricytochromes c, even though the observed hyperfine resonance spectra are significantly different for the various cytochromes. The pattern of dimer proton hyperfine resonances is distinct from the isozyme-1 monomer pattern, which indicates that the formation of a disulfide bridge via Cys-102 is detected at the heme site, approximately 10 A distant. It appears that a specific structural change is induced upon dimerization, which, in turn, causes specific perturbations in the vicinity of the heme. However, the general features of the NOE connectivity pattern in the dimer are the same as for the monomer indicating that dimerization does not result in drastic structural disruption. Furthermore, the 1H NMR spectrum of the dimer can be mimicked by the monomer form that results when the -SH group of Cys-102 is chemically modified with certain types of bulky, or hydrophilic reagents (i.e. 5,5'-dithiobis[2-nitrobenzoate], indicating that perturbations of the yeast isozyme-1 ferricytochrome c proton resonance spectrum observed upon dimerization are essentially due to changes in intramolecular, rather than intermolecular, interactions. These results suggest that a possible regulatory site for yeast isozyme-1 cytochrome c exists at position 102, which could conceivably have a physiological role in altering the conformation of the molecule.  相似文献   

17.
The peptide resonances of the 1H and 15N nuclear magnetic resonance spectra of ferrocytochrome c2 from Rhodobacter capsulatus are sequentially assigned by a combination of 2D 1H-1H and 1H-15N spectroscopy, the latter performed on 15N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show alpha-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two alpha-helices, there are three single 3(10) turns, 70-72, 76-78, and 107-109. In addition alpha H-NHi+1 and alpha H-NHi+2 NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c2 of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c2. The NOE data show that this insertion forms a loop, probably an omega loop. 1H-15N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c2 of R. capsulatus with the highly homologous horse heart cytochrome c [Wand, A. J., Roder, H., & Englander, S. W. (1986) Biochemistry 25, 1107-1114] shows that this helix is less stable in cytochrome c2.  相似文献   

18.
The proton resonances of the heme, the axial ligands, and other hyperfine-shifted resonances in the 1H nuclear magnetic resonance spectrum of horse ferricytochrome c have been investigated by means of one- and two-dimensional nuclear Overhauser and magnetization transfer methods. Conditions for saturation transfer experiments in mixtures of ferro- and ferricytochrome c were optimized for the cross assignment of corresponding resonances in the two oxidation states. New resonance assignments were obtained for the methine protons of both thioether bridges, the beta and gamma meso protons, the propionate six heme substituent, the N pi H of His-18, and the Tyr-67 OH. In addition, several recently reported assignments were confirmed. All of the resolved hyperfine-shifted resonances in the spectrum of ferricytochrome c are now identified. The Fermi contact shifts experienced by the heme and ligand protons are discussed.  相似文献   

19.
B S Choi  A G Redfield 《Biochemistry》1992,31(51):12799-12802
1,3-15N-Labeled uracil was synthesized chemically and used to prepare labeled Escherichia coli tRNA(Val) biosynthetically. 500-MHz measurements of 15N and proton chemical shift were obtained, for all uridine and uridine-related bases, by heteronuclear multiple-quantum coherence spectroscopy. All the uracil NH group resonances were assigned and were in agreement with previous proton-only assignments. The temperature dependence of intensities of resonances was used to infer the relative stability of parts of the molecule. The acceptor stem was the least thermally stable structural feature, while the anticodon and T loop were relatively more stable.  相似文献   

20.
Uniformly 15N-enriched ribonuclease T1 (RNase T1) was obtained from Escherichia coli by recombinant techniques. Heteronuclear 1H, 15N-shift correlation spectra were recorded utilizing proton detection. Direct 1H, 15N connectivities were established applying the heteronuclear multiple-quantum coherence technique. Additional 1H, 1H-TOCSY or 1H, 1H-NOESY transfer steps allowed for sequential assignments. Nitrogen atoms without directly bonded protons were detected by means of the heteronuclear multiple-bond correlation experiment. Signals emerging from 15NH and 15NH2 groups were distinguished by heteronuclear triple-quantum filtering methods. 119 nitrogen resonances out of the expected 127 were assigned unambiguously; in addition, previously obtained proton assignments were extended. Preliminary 1H, 15N NMR investigation were performed on the RNase-T1-3'GMP inhibitor complex. Results were interpreted with respect to nucleotide binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号