首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bovine myelin proteolipid apoprotein (PLA), obtained in high yield and purity by a novel ultrafiltration procedure, has been used to study the perturbations produced by this protein on phosphatidylcholine bilayers, using infrared spectroscopy, nuclear magnetic resonance and fluorescence polarisation. PLA interacts with phospholipids in a similar manner to other intrinsic proteins. For bilayers in the fluid state, the fatty-acyl chain static order, as measured by deuterium NMR, is slightly increased in the presence of the protein, except at very high PLA concentrations. Phosphorus NMR reveals some perturbation of the phospholipid polar group by PLA, but to a smaller degree than occurs with other intrinsic proteins. An increase in static order above tc (the onset temperature for gel-to-fluid transition) is also detected by infrared spectroscopy. Studies using steady-state polarisation of diphenylhexatriene fluorescence indicate that the microviscosity of the bilayer increases as a function of the protein mole fraction. From these data an estimation of the average number of lipids perturbed per protein monomer has been made, and a figure of 37 phospholipid molecules determined. The data are compatible with a picture of a hydrophobic polypeptide, perturbing the phospholipids close to it, but allowing rapid (greater than 10(4) s-1) exchange with all the lipid molecules in the system.  相似文献   

2.
Basic (encephalitogenic) protein and water-soluble proteolipid apoprotein isolated from bovine brain myelin bind 8-anilino-1-naphthalenesulfonate and 2-p-toluidinylnaphthalene-6-sulfonate with resulting enhancement of dye fluorescence and a blue-shift of the emission spectrum. The dyes had a higher affinity and quantum yield, when bound to the proteolipid (Kans=2.3x10--6,=0.67) than to the basic protein (Kans=3.3x10--5,=0.40). From the efficiency of radiationless energy transfer from trytophan to bound ANS the intramolecular distances were calculated to be 17 and 27 A for the proteolipid and basic protein, respectively. Unlike myelin, incubation with proteolytic enzymes (e.g., Pronase and trypsin) abolished fluorescence enhancement of ANS or TNS by the extracted proteins. In contrast to myelin, the fluorescence of solutions of fluorescent probes plus proteolipid was reduced by Ca-2+,not affected by La-3+, local anesthetics, or polymyxin B, and only slightly increased by low pH or blockade of free carboxyl groups. The reactions of the basic protein were similar under these conditions except for a two- to threefold increase in dye binding in the presence of La-3+, or after blockade of carboxyl groups. N-Bromosuccinimide oxidation of tryptophan groups nearly abolished native protein fluorescence, but did not affect dye binding. However, alkylation of tryptophan groups of both proteins by 2-hydroxy (or methoxy)-5-nitrobenzyl bromide reduced the of bound ANS (excited at 380 nm) to 0.15 normal. The same effect was observed with human serum albumin. The fluorescence emission of ANS bound to myelin was not affected by alkylation of membrane tryptophan groups with the Koshland reagents, except for abolition of energy transfer from tryptophan to bound dye molecules. This suggests that dye binding to protein is negligible in the intact membrane. Proteolipid incorporated into lipid vesicles containing phosphatidylserine did not bind ANS or TNS unless Ca-2+, La-3+, polymyxin B, or local anesthetics were added to reduce the net negative surface potential of the lipid membranes. However, binding to protein in the lipid-protein vesicles remained less than for soluble protein. Basic protein or bovine serum albumin dye binding sites remained accessible after equilibration of these proteins with the same lipid vesicles. It is proposed that in the intact myelin membrane the proteolipid is probably strongly associated with specific anionic membrane lipids (i.e., phosphatidylserine), and most likely deeply embedded within the lipid hydrocarbon matrix of the myelin membrane. Also, in the intact myelin membrane the fluorescent probes are associated primarily, if not solely with the membrane lipids as indicated by the binding data. This is particularly the case for TNS where the total number of myelin binding sites is three to four times the potential protein binding sites.  相似文献   

3.
L I Horváth  P J Brophy  D Marsh 《Biochemistry》1990,29(11):2635-2638
The lipid specificities of two related integral membrane proteins of central nervous system myelin, the proteolipid (PLP) and DM-20 proteins, which differ only by the deletion of a polar stretch of 35 contiguous amino acid residues, were studied with spin-labeled lipids after reconstitution into dimyristoyl-phosphatidylcholine. The selectivity in populating lipid association sites at the protein interface and in modulating the lipid exchange between protein and bulk lipid sites was quantitated by the relative association constants and the off-rate constants for exchange, respectively, for both proteins. The sequence deleted in DM-20 (residues 116-150 of PLP) is found to play a major role in determining the lipid selectivity for the parent PLP protein.  相似文献   

4.
Summary

The segregation of proteins to specific cellular membranes is recognized as a common phenomenon. In oligodendrocytes of the central nervous system, localization of certain proteins to select regions of the plasma membrane gives rise to the myelin membrane. Whilst the fundamental structure and composition of myelin is well understood, less is known of the mechanisms by which the constituent proteins are specifically recruited to those regions of plasma membrane that are forming myelin. The two principal proteins of myelin, the myelin basic protein and proteolipid protein, differ greatly in character and sites of synthesis. The message for myelin basic protein is selectively translocated to the ends of the cell processes, where it is translated on free ribosomes and is incorporated directly into the membrane. Proteolipid protein synthesized at the rough endoplasmic reticulum, processed through the Golgi apparatus, and presumably transported via vesicles to the myelin membrane. This review examines the mechanisms by which these two proteins are targeted to the myelin membrane.  相似文献   

5.
Ionophoric properties of the Proteolipid Apoprotein have been assayed. This is a highly purified and delipidated intrinsic myelin membrane protein, isolated from bovine brain white matter. The preparation of myelin membrane vesicles or the incorporation of purified protein into Dimiristoylphosphatidylcholine liposomes have been carried out. According to our results, the myelin Proteolipid protein may act as a Na+ and Rb+ (K+) unidirectional ionophoretic channel, which main physiological role could be related to the maintenance of ionic equilibrium of myelin sheath around the axons.  相似文献   

6.
cDNA clones of rat brain proteolipid protein (PLP), also named lipophilin, the major integral myelin membrane protein, and of myelin basic protein (MBP), the major extrinsic myelin protein, have been isolated from a rat brain cDNA library cloned into the PstI site of pBR322. Poly(A)+ RNA from actively myelinating 18-day-old rats has been reversely transcribed. Oligonucleotides synthesized according to the established amino-acid sequence of lipophilin and the nucleotide sequence of the small myelin basic protein of the N-terminal, the central and C-terminal region of their sequences were used as hybridization probes for screening. The largest insert in one of several lipophilin clones was 2,585 base pairs (bp) in length (pLp 1). It contained 521 bp of the C-terminal coding sequence and the complete 2,064 bp long non-coding 3' sequence. The myelin basic protein cDNA insert of clones pMBP5 and pMBP6 is 2,530 bp long and that of clones pMBP2 and pMBP3 640 bp. These clones were also characterized. pMBP2 was sequenced and used together with the lipophilin cDNA clones as hybridization probes to estimate the lipophilin and myelin basic protein mRNA levels of rat brain during the myelination period. The expression of the lipophilin and myelin basic protein genes during development of the myelin sheath appears to be strictly coordinated.  相似文献   

7.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9685-9691
Electron spin resonance (ESR) spectroscopy and chemical binding assays were used to study the interaction of bovine spinal cord myelin basic protein (MBP) with dimyristoylphosphatidylglycerol (DMPG) membranes. Increasing binding of MBP to DMPG bilayers resulted in an increasing motional restriction of PG spin-labeled at the C-5 atom position in the acyl chain, up to a maximum degree of association of 1 MBP molecule per 36 lipid molecules. ESR spectra of PG spin-labels labeled at other positions in the sn-2 chain showed a similar motional restriction, while still preserving the chain flexibility gradient characteristic of fluid lipid bilayers. In addition, labels at the C-12 and C-14 atom positions gave two-component spectra, suggesting a partial hydrophobic penetration of the MBP into the bilayer. Spectral subtractions were used to quantitate the membrane penetration in terms of the stoichiometry of the lipid-protein complexes. Approximately 50% of the spin-labeled lipid chains were directly affected at saturation protein binding. The salt and pH dependence of the ESR spectra and of the protein binding demonstrated that electrostatic interaction of the basic residues of the MBP with the PG headgroups is necessary for an effective association of the MBP with phospholipid bilayers. Binding of the protein, and concomitant perturbation of the lipid chain mobility, was reduced as the ionic strength increased, until at salt concentrations above 1 M NaCl the protein was no longer bound. The binding and ESR spectral perturbation also decreased as the protein charge was reduced by pH titration to above the pI of the protein at approximately pH 10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Myelin basic proteins (MBPs) from 6-day-old, 10-day-old, 20-day-old and adult normal mouse brain were compared with those from 20-day-old jimpy (dysmyelinating mutant) mouse brain to determine the effect of reduced levels of proteolipid protein (PLP) on MBPs. Alkaline-urea-gel electrophoresis showed that 6-day-old and 10-day-old normal and jimpy MBPs lacked charge microheterogeneity, since C8 (the least cationic of the components; not be confused with complement component C8) was the only charge isomer present. In contrast, MBPs from 20-day-old and adult normal mouse brain displayed extensive charge microheterogeneity, having at least eight components. A 32 kDa MBP was the major isoform observed on immunoblots of acid-soluble protein from 6-day-old and 10-day-old normal and 20-day-old jimpy mouse brain. There were eight bands present in 20-day-old and adult normal mouse brain. Purified human MBP charge heteromers C1, C2, C3 and C4 reacted strongly with rat 14 kDa MBP antiserum, whereas the reaction with human C8 was weak. This suggested that MBPs from early-myelinating and jimpy mice did not react to MBP antisera because C8 was the major charge isomer in these animals. Purification of MBPs from normal and jimpy brain by alkaline-gel electrophoresis showed that both normal and jimpy MBPs have size heterogeneity when subjected to SDS/PAGE. However, the size isoforms in normal mouse brain (32, 21, 18.5, 17 and 14 kDa) differed from those in jimpy brain (32, 21, 20, 17, 15 and 14 kDa) in both size and relative amounts. Amino acid analyses of MBPs from jimpy brain showed an increase in glutamic acid, alanine and ornithine, and a decrease in histidine, arginine and proline. The changes in glutamic acid, ornithine and arginine are characteristic of the differences observed in human C8 when compared with C1.  相似文献   

9.
The amino-acid sequence of bovine myelin lipophilin (proteolipid apoprotein, Folch-protein) has been completed. Lipophilin is a 276 amino acid residues containing, extremely hydrophobic membrane protein with molecular mass 30,000 Da. The sequence determination was based on automated Edman degradation of four tryptophan and four cyanogen bromide fragments and of proteolytic peptides of complete lipophilin as well as the fragments obtained by chemical cleavage. Four additional sequences were determined which led to the completion of the primary structure. Lipophilin is esterified at threonine-198 by long chain fatty acids (palmitic, stearic and oleic acid). The attachment site has been established at the same threonine residue in three different peptides isolated from thermolysinolytic, papainolytic and chymotrypsinolytic hydrolysates. This threonine residue is part of a hydrophilic segment of lipophilin. The covalent fatty acyl bond is being discussed together with important structural and functional properties of this membrane protein which can be derived from sequence information. New separation and purification methods of hydrophobic and hydrophilic polypeptides for this sequence determination (fractional solubilization, silica gel exclusion, high-performance liquid chromatography) had to be elaborated as indispensable tools. They are generally applicable to the structural analysis of hydrophobic membrane proteins. Four long (26, 29, 40 and 36 residues) and one medium long (12 residues) hydrophobic segments are separated by four predominantly positively and one negatively charged hydrophilic segments. On the basis of structural data a model for the membrane integration of lipophilin is proposed.  相似文献   

10.
Uncoated vesicles (UCV) loaded with the myelin proteolipid apoprotein covalently tagged with fluorescein (PLPF) were found to interact with isolated oligodendrocytes from bovine brain at 4°C as well as at 37°C. After 1.5 hours of incubation, the labeled protein was localized in the cell membranes. After 2.5 hours the fluorescence intensity associated with the oligodendrocytes decreased and completely disappeared at t=3.5 hours. Addition of KCl or EDTA in the incubation medium significantly hindered the interaction with cells. In contrast, the elimination of membrane proteins from UCV did not perturb cell labeling. A specific role of PLP was suggested since UCV loaded with a soluble protein (BSAF) led to a weak cell labeling.Abbreviations IAF 5-iodacetamidofluorescein - BSA bovine serum albumin - BSA BSA labelled with IAF - PLP proteolipid apoprotein - PLPF aqueous form of PLP tagged with IAF - CV coated vesicles - UCV uncoated vesicles - UCV*PLPF UCV loaded with PLPF - MV model vesicles This work was suported by Cnrs and INSERM.  相似文献   

11.
MBP and PLP are major structural protein components of myelin. Both proteins play a functional role in formation of myelin sheath and in maintenance of its compaction. Immune responses to MBP and PLP have been implicated in the pathogenesis of multiple sclerosis (MS), an auto-immune disease of the central nervous system. Recombinant forms of both proteins isolated and purified from bacterial or insect cell systems are commonly used to study the specificity of auto-response in MS. We have prepared recombinant forms of MBP and PLP stably expressed in CHO cells. Several clones with proper cytoplasmic MBP or surface PLP localization were obtained and characterized by flow cytometry and indirect immunostaining. CHO cells expressing the recombinant forms of MBP and PLP can be very useful in studies on the autoimmune mechanism of MS.  相似文献   

12.
Acylation of endogenous myelin proteolipid protein with different acyl-CoAs   总被引:8,自引:0,他引:8  
Fatty acyltransferase activity that catalyzes the transfer of palmitic acid from palmitoyl-CoA to the endogenous myelin proteolipid protein has been demonstrated in isolated rat brain myelin. Optimum enzyme activity for the acylation of proteolipid protein was obtained in 0.1% Triton X-100, 2 mM MgCl2, and 1 mM dithiothreitol at a pH of 7.5 and at 37 degrees C. Other detergents had little or no effect on the reaction whereas acylation was completely abolished by sodium dodecyl sulphate (0.1%). Pulse-chase experiments indicated that the reaction involves the net addition of fatty acid to the protein and not a rapid fatty acid exchange. The rate of acylation was linear up to 30 min, indicating that the concentration of endogenous protein acceptor was constant. Under these conditions and at short time periods, the enzyme activity versus acyl-CoA concentration showed a hyperbolic curve. The apparent Km and Vmax for palmitoyl-CoA was 41 microM and 115 pmol/mg protein/min. Similar values were obtained for stearoyl and oleoyl-CoA, whereas myristoyl-CoA showed a lower specificity for the enzyme. The acyl-CoA specificity was also studied in competition experiments using several saturated and unsaturated fatty acid-CoAs. The product of the reaction was identified as myelin proteolipid protein and the fatty acid was shown to be attached to the protein via an ester linkage. Limited proteolysis and peptide mapping showed that the same sites on the proteolipid protein were acylated when the reaction was carried out in isolated myelin preparations or in brain tissue slices, suggesting physiological importance for the in vitro acylation of endogenous myelin proteolipid protein.  相似文献   

13.
Autoacylation of myelin proteolipid protein with acyl coenzyme A   总被引:7,自引:0,他引:7  
Rat brain myelin proteolipid protein (PLP) is known to contain long chain, covalently bound fatty acids. In the course of characterizing the mechanism of acylation, we found that the isolated PLP, in the absence of any membrane fraction, was esterified after incubation with [3H]palmitoyl coenzyme A (CoA). This observation demonstrated that the protein acts as both an acylating enzyme and an acceptor. Thus, acylation occurs by an autocatalytic process. The possibility of a separate acyltransferase that copurifies with PLP was essentially excluded by adding brain subcellular fractions to the reaction mixtures and by changing the isolation procedure. After deacylation, the protein was acylated at a 4-fold greater rate, suggesting that the original sites were reacylated. The palmitoyl-CoA concentration followed Michaelis kinetics, confirming that spontaneous acylation was not occurring. Pulse-chase experiments indicated that the reaction entails net addition of acyl groups. Although fatty acids are bound via an O-ester linkage, free SH groups are required in the reaction. Denaturation of the protein by sodium dodecyl sulfate or heat inhibits the reaction, whereas cerulenin has little or no effect. PO, the major protein in peripheral nerve myelin, is also an acylated protein, but it was not labeled upon incubation of either peripheral myelin or the isolated protein with [3H]palmitoyl-CoA, demonstrating that it is acylated by a different route. Several synthetic peptides derived from PLP sequences with sites known to be acylated in vivo as well as a series of deacylated PLP tryptic peptides were not labeled, indicating that integrity of the protein is required for acylation. Limited proteolysis and peptide mapping showed that the same sites are acylated in vitro or in vivo, suggesting that the autocatalytic acylation reaction is physiological.  相似文献   

14.
M W Nowak  H A Berman 《Biochemistry》1991,30(30):7642-7651
This paper examines the influence of electrolytes on fluorescence spectral properties of the single tryptophanyl residue, Trp-115, within the 18.5-kDa species of myelin basic protein from bovine brain. Steady-state fluorescence spectra and intensities and time-correlated fluorescence lifetimes increased in the presence of increasing concentrations of mono- and divalent electrolytes (Li+, Na+, K+, Mg2+, Ca2+, Cl-, ClO4-, SO4(2-), and PO4(3-)). In all cases, the increases closely paralleled the ionic strength of the bulk aqueous medium and resembled that observed upon immersion of the protein in solutions of urea. This behavior was therefore concluded to reflect changes in the solution conformation of myelin basic protein. Bimolecular quenching of Trp-115 by acrylamide was rapid (10(9) M-1 s-1), approaching the diffusion limitation, and markedly dependent on the viscosity of the bulk aqueous medium. Rotational depolarization of myelin basic protein was rapid (phi less than or equal to 1 ns), occurring at rates exceeding those predicted for a rigid particle of revolution, and markedly dependent on the viscosity of the surrounding medium. Whereas the bimolecular quenching constants were unaltered in the presence of electrolytes, rotational depolarization of myelin basic protein underwent substantial slowing as indicated by the appearance of an additional decay component characterized by a correlation time of 5-10 ns. These studies indicate that Trp-115 of myelin basic protein is readily accessible to the bulk aqueous medium and is associated with a highly mobile segment of the protein. The slowing of rotational depolarization upon immersion of myelin basic protein in electrolyte solutions is consistent with an electrolyte-induced self-association of myelin basic protein molecules and indicates a relationship between the lability of solution conformation on the one hand and the capacity for self-association on the other.  相似文献   

15.
16.
Abstract— A homogeneous preparation of proteolipid protein (PLP) from rat brain myelin was isolated by preparative gel electrophoresis in sodium dodecyl sulfate and chemically characterized. The results of amino acid and N-terminal amino acid analyses are reported. The same preparation of myelin PLP was used to produce specific precipitating antibodies. Rabbit and goat antisera to myelin PLP each gave a single precipitin line with purified PLP dissolved in Triton X-100. Under identical conditions, no precipitation was observed with antiserum to myelin basic protein or with control serum. Immunofluorescence localization employing antiserum to PLP demonstrated bright specific fluorescence restricted to the myelin sheaths of axons in all anatomical areas of the rat brain examined. Neuronal cell bodies and their dendrites were completely negative with respect to the presence of proteolipid protein. PLP could not be localized in the cell bodies or fibrous processes in any of the glial elements in the adult rat brain. However, myelin PLP was clearly visible in the cytoplasm and processes of actively myelinating oligodendrocytes in the corpus callosum in the brains of 10-day-old rats.  相似文献   

17.
Swamy MJ  Horváth LI  Brophy PJ  Marsh D 《Biochemistry》1999,38(49):16333-16339
Interactions between lipid-anchored and transmembrane proteins are relevant to the intracellular membrane sorting of glycosyl phosphatidylinositol-linked proteins. We have studied the interaction of a spin-labeled biotinyl diacyl phospholipid, with and without specifically bound avidin, with the myelin proteolipid protein (or the DM-20 isoform) reconstituted in dimyristoylphosphatidylcholine. Tetrameric avidin bound to the N-biotinyl lipid headgroup is a surface-anchored protein, and the myelin proteolipid is an integral protein containing four transmembrane helices. The electron spin resonance (ESR) spectrum of N-biotinyl phosphatidylethanolamine spin-labeled at the C-14 position of the sn-2 chain consists of two components in fluid-phase membranes of dimyristoylphosphatidylcholine containing the proteolipid. In the absence of avidin, this is characteristic of lipid-protein interactions with integral transmembrane proteins. The more motionally restricted component represents the lipid population in direct contact with the intramembranous surface of the integral protein, and the more mobile component corresponds to the bulk fluid lipid environment of the bilayer. In the presence of avidin, the biotin-lipid chains have reduced mobility because of the binding to avidin, even in the absence of the proteolipid [Swamy, M. J., and Marsh, D. (1997) Biochemistry 36, 7403-7407]. In the presence of the proteolipid, the major fraction of the avidin-anchored chains is further restricted in its mobility by interaction with the transmembrane protein. At a biotin-lipid concentration of 1 mol %, approximately 80% of the avidin-linked chains are restricted in membranes with a phosphatidylcholine:proteolipid molar ratio of 37:1. This relatively high stoichiometry of interaction can be explained when allowance is made for the closest interaction distance between the lipid-anchored avidin tetramer and the transmembrane proteolipid hexamer, without any specific interaction between the two types of membrane-associated proteins. The interaction is essentially one of steric exclusion, but the lipid chains are rendered more sensitive to interaction with the integral protein by being linked to avidin, even though they are removed from the immediate intramembrane protein-lipid interface. This could have implications for the tendency of lipid-anchored chains to associate with membrane domains with reduced lipid mobility.  相似文献   

18.
19.
The major rat brain myelin proteolipid P7 apoprotein has been isolated in pure form by a preparative sodium dodecylsulphate gel electrophoresis system. Automated Edman degradation permitted the establishment of the N-terminal sequence up to the 20th amino acid. The C-terminal sequence was determined by the action of carboxypeptidase A.  相似文献   

20.
Myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids. A large proportion of these acyl moieties are bound in thioester linkages, as demonstrated by alkylation of newly formed SH groups upon deacylation. To identify the Cys residue(s) involved in the thioester linkage(s), reduced and carboxyamidomethylated proteolipid protein was labeled with [14C]iodoacetamide upon deacylation with neutral hydroxylamine. The labeled protein was digested with trypsin or pepsin, and peptides analyzed by RP-HPLC. Identification of the isolated radioactive peptides by amino acid analysis, peptide sequencing and/or fast-atom bombardment-mass spectrometry revealed that Cys108 in the bovine PLP sequence is an acylated site. The sequence surrounding the palmitoylation site in the myelin PLP is strikingly similar to that found in rhodopsin. Furthermore, as in rhodopsin and other members of the G protein-coupled receptor family, this Cys residue is located within a hydrophilic, basic, and possibly cytoplasmic, domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号